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Abstract.  The Lebesgue measure on open subsets of 
Euclidean space is unequivocally one of the most 
referenced measures used in multivariate integral 
analysis.  This measure and other induced outer 
Hausdorff measures on manifolds with empty interiors 
are obtained via the standard metric upon integration of 
appropriate volume elements on these subsets of 
Euclidean space. This paper aims to elucidate the fluidity 
of computational tools for determining volumes in the 
case of manifolds with axial rotational symmetry. 
Certain standard tools from Riemannian geometry are 
employed for the illustration of fundamental techniques 
prerequisite for the precise evaluation, or tactful 
estimation, of multivariate integrals on manifolds 
embedded in Euclidean space.  
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INTRODUCTION 

 Differential forms are the items integrated on 
manifolds in all multivariate integration applications, 
and the volume element is the fundamental differential 
form identified on every manifold.  Open sets are the 
manifolds in Euclidean space with dimension 
coincident with that of the ambient space, meaning that 
open sets have the same volume element as the spaces 
containing them.  Manifolds of dimension one less are 
called hypersurfaces of Euclidean space, with the 
difference in dimension implying a different volume 
element from that of the ambient Euclidean space.  
Hypersurfaces are highly didactic for purposes 
including vector algebra and their intrinsic geometric 
properties; purposes which we shall only reference at 
the basest levels in our study.   

 The only differential forms we may integrate 
over an n-dimensional manifold to obtain non-trivial 
results are differential n-forms on the manifold, of 
which the volume element is the prime example.  
Hence, given the canonical coordinate system (x𝑖)𝑖=1

𝑚 on 
ℝ𝑚 , a differential n-form (n ≤ m) can always be written 
as: 

 f𝑗 (x𝑖)𝑖=1
𝑚 𝑑𝑥𝑖1

˄𝑑𝑥𝑖2
˄…  ˄𝑑𝑥𝑖𝑛

𝑗

 , 

whereby the 𝑓𝑗 ’s are smooth real-valued functions 

defined on the manifold.  We identify “˄" as the wedge 
product operator which is antisymmetric and 

associative for differential one forms, such as the 
canonical projection maps dx𝑖 .  For other properties of 
the wedge product, the reader may refer to ([2], Page 
14).  For the relevance of differential forms in 
integration, we have the result: 

 f𝑗 (x𝑖)𝑖=1
𝑚 𝑑𝑥𝑖1

𝑑𝑥𝑖2
…  𝑑𝑥𝑖𝑛

𝑀𝑛

=  f𝑗 (x𝑖)𝑖=1
𝑚 𝑑𝑥𝑖1

˄𝑑𝑥𝑖2
˄…  ˄𝑑𝑥𝑖𝑛

𝑀𝑛
 

for any n-dimensional submanifold𝑀𝑛  embedded in 
ℝ𝑚 .   

 It is useful to hereby define the volume 
element for a given manifold.  This differential form on 
𝑀𝑛 is defined as the n-form ω for which 
ω(𝑒1 , 𝑒2, … , 𝑒𝑛) = 1 whenever (𝑒1, 𝑒2, … , 𝑒𝑛) is an 
orthonormal basis for the tangent space to 𝑀𝑛  and 
[𝑒1, 𝑒2 , … , 𝑒𝑛] is the usual orientation for the tangent 
space. (Our focus is only on orientable manifolds.)  For 
open setsin ℝ𝑚 , we identify the volume element to be 
dx1˄ dx2˄… ˄ dx𝑚 .  For hypersurfaces, of which 
smooth boundaries of bounded open sets are prevalent 
examples, the volume form is identified as 

 (−1)𝑗+1 𝑛𝑗 dx1˄ dx2˄…˄dx𝑗˄… dx𝑚

𝑚

𝑗 =1

 

whereby ( 𝑛1 ,  𝑛2, … ,  𝑛𝑚 ) is the outward unit normal 
vector field or Gauss map of the manifold, and the 
strikethrough on any projection map in the given 
formula denotes its exclusion from the term. 
 We hereby reckon with the shorthand 
notations 𝑑𝑉 and 𝑑𝑆 to be respectively used for the 
volume elements of open sets of generic Euclidean 
space (ℝ𝑚 ) and hypersurfaces embedded in the space. 
As the name implies, integration of a volume form over 
a given manifold yields its volume – referred to as 
Lebesgue measure for open bounded sets and an 
induced outer Hausdorff measure for submanifolds of 
lower dimension.  When precise results are required 
for multivariate integration procedures, axial 
symmetry of the target manifolds is a property that 
eases computational manipulations, when present.  
Otherwise, a fair grasp on applicable theoretical details 
can always facilitate the development of useful integral 
estimates.  

 With the aforementioned theoretical summary, 
we are now equipped to delve into the main intended 
content, which is scrutiny of methods for determining 
volumes of manifolds with rotational symmetry.           
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RESULTS 

 

For the above sketch, the reader should take the region 
D as a two dimensional section of (𝑥, 𝑦, 𝑧)-space ℝ3, 
with the 𝑧 −axis pointing outward from the page 
perpendicularly.  Upon complete rotation of D  by 2𝜋 
radians about the y-axis in this sketch, we obtain a solid 
(open set) with y-axial rotational symmetry, which we 
shall denote 𝑈. Likewise, upon rotation of the graph for 
[𝑥 = 𝑓 𝑦 ] by 2𝜋 radians about the y-axis in this sketch, 
we obtain a 2-dimensional surface with y-axial 
rotational symmetry, which we shall denote 𝑆.  
Formulae for computing the “volumes” of 𝑈 and 𝑆are 
ubiquitously available in academic material published 
on methods of integral calculus in a single independent 
variable, except that we aim here to illustrate the 
efficacy of engagement of tools from differential forms 
in establishing them.  To successfully implement this 
method, we require that unique tangent lines to the 
graph for [𝑥 = 𝑓 𝑦 ]exist at each point along the curve, 
meaning 𝑓′ 𝑦 must be well-defined on the interval 
(𝑦2 , 𝑦1).  To initiate all computations with this 
approach, we first identify the matrix of rotation by 𝜃 
radians about the y-axis, given as: 

𝑀 =  
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

  

This matrix is compatible with the canonical 
rectangular coordinate system on ℝ3. 

 Let us now investigate the volume of the solid 
of revolution.  The depicted region Discomprised of 
points (𝑥, 𝑦, 0) such that 0 ≤ 𝑥 ≤ 𝑓(𝑦) and 𝑦2 ≤ 𝑦 ≤ 𝑦1 . 
We may apply the matrix 𝑀 to the points of D to 
determine parametric rectangular equations (𝑋, 𝑌, 𝑍) 
for all points in the solid manifold of revolution in 
terms of 𝑥, 𝑦 and 𝜃. 

 

 
𝑋
𝑌
𝑍
 =  

𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0

𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃
 .  

𝑥
𝑦
0
 =  

𝑥. 𝑐𝑜𝑠𝜃
𝑦

𝑥. 𝑠𝑖𝑛𝜃
  

𝑑𝑋 =
𝜕𝑋

𝜕𝑥
𝑑𝑥 +

𝜕𝑋

𝜕𝑦
𝑑𝑦 +

𝜕𝑋

𝜕𝜃
𝑑𝜃

= 𝑐𝑜𝑠𝜃𝑑𝑥 − 𝑥. 𝑠𝑖𝑛𝜃𝑑𝜃 

𝑑𝑌 =
𝜕𝑌

𝜕𝑥
𝑑𝑥 +

𝜕𝑌

𝜕𝑦
𝑑𝑦 +

𝜕𝑌

𝜕𝜃
𝑑𝜃 = 𝑑𝑦 

𝑑𝑍 =
𝜕𝑍

𝜕𝑥
𝑑𝑥 +

𝜕𝑍

𝜕𝑦
𝑑𝑦 +

𝜕𝑍

𝜕𝜃
𝑑𝜃

= 𝑠𝑖𝑛𝜃𝑑𝑥 + 𝑥. 𝑐𝑜𝑠𝜃𝑑𝜃 

𝑑𝑋˄𝑑𝑌˄𝑑𝑍 

= (𝑐𝑜𝑠𝜃𝑑𝑥 − 𝑥. 𝑠𝑖𝑛𝜃𝑑𝜃)˄𝑑𝑦˄(𝑠𝑖𝑛𝜃𝑑𝑥

+ 𝑥. 𝑐𝑜𝑠𝜃𝑑𝜃) 

= (𝑐𝑜𝑠𝜃𝑑𝑥˄𝑑𝑦 − 𝑥. 𝑠𝑖𝑛𝜃𝑑𝜃˄𝑑𝑦)˄(𝑠𝑖𝑛𝜃𝑑𝑥

+ 𝑥. 𝑐𝑜𝑠𝜃𝑑𝜃) 

= 𝑥. 𝑐𝑜𝑠2𝜃𝑑𝑥˄𝑑𝑦˄𝑑𝜃 − 𝑥. 𝑠𝑖𝑛2𝜃𝑑𝜃˄𝑑𝑦˄𝑑𝑥 

= 𝑥. 𝑐𝑜𝑠2𝜃𝑑𝑥˄𝑑𝑦˄𝑑𝜃 + 𝑥. 𝑠𝑖𝑛2𝜃𝑑𝑥˄𝑑𝑦˄𝑑𝜃 

= 𝑥 𝑑𝑥˄𝑑𝑦˄𝑑𝜃. 

The reader must recall the antisymmetric and 
associative properties of the wedge product between 
differential one-forms in order to come to terms with 
the above computational result. The antisymmetry in 
view makes it that   𝛼˄𝛼 = −𝛼˄𝛼 = 0   for any 
differential one form 𝛼; of which the projection maps 
on Euclidean space are the prime examples.   

 The usual volume element on the open set of 
revolution 𝑈 is the differential 3-form𝑑𝑋˄𝑑𝑌˄𝑑𝑍 
computed above, since  (𝑋, 𝑌, 𝑍) are the canonical 
rectangular coordinates for its points, determined via 
application of the rotation matrix 𝑀 as shown above.  
We may now determine the required volume by 
employing straightforward multivariate integration 
techniques. 

Volume of 𝑈 =  𝑑𝑋˄𝑑𝑌˄𝑑𝑍
𝑈

=     𝑥 𝑑𝑥˄𝑑𝑦˄𝑑𝜃
𝑓(𝑦)

0

𝑦1

𝑦2

2𝜋

0

=    𝑥 𝑑𝑥𝑑𝑦𝑑𝜃
𝑓(𝑦)

0

𝑦1

𝑦2

2𝜋

0

 

UsingFubini’s theorem of multivariate integration to 
simplify the above expression; 

 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑈  

=    
𝑥2

2
 
𝑥=0

𝑥=𝑓 𝑦 

𝑑𝑦𝑑𝜃
𝑦1

𝑦2

2𝜋

0

 

= 2𝜋  
 𝑓 𝑦  

2

2
 𝑑𝑦  

𝑦1

𝑦2

 

=  𝜋(𝑓 𝑦 )2𝑑𝑦           → (𝟏) .
𝑦1

𝑦2

 

 We now investigate the “volume” (surface 
area) of 𝑆 from rotation of the graph for [𝑥 = 𝑓 𝑦 ] by 
2𝜋 radians about the y-axis.  The points along this 
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graph can all be represented parametrically by 
𝑃 𝑦 = (𝑓 𝑦 , 𝑦, 0)for 𝑦2 ≤ 𝑦 ≤ 𝑦1 .  A tangent vector 
field along this curve obtained by differentiating with 

respect to the parameter 𝑦 is 𝑃′ 𝑦 =  𝑓 ′ 𝑦 , 1,0 .  

Hence, a normal vector field along this curve is 

 1, −𝑓 ′ 𝑦 , 0 , as it is clearly orthogonal 

(perpendicular) to 𝑃′ 𝑦  within the 2-dimensional 
section depicted in the associated sketch above.   As 
such, a unit normal vector field along the curve within 
this section is: 

𝑛  =
 1, −𝑓 ′ 𝑦 , 0 

 1 + (𝑓′ 𝑦 )2
  .  

We must now apply the rotation matrix 𝑀 given 
previously to points 𝑃 𝑦  in order to get rectangular 
parametric coordinates (𝑋, 𝑌, 𝑍) for all points of 𝑆.  We 
must also apply 𝑀 to the vector field 𝑛   to determine a 
unit normal vector field to the 2-dimensional manifold 
𝑆. 

𝑀. 𝑃 𝑦 =  
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

 .  
𝑓 𝑦 
𝑦
0

 =  

𝑓 𝑦 . 𝑐𝑜𝑠𝜃
𝑦

𝑓 𝑦 . 𝑠𝑖𝑛𝜃
 

≔  
𝑋
𝑌
𝑍
  

𝑀. 𝑛  =
1

 1 + (𝑓′ 𝑦 )2
 
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

 .  −
1

𝑓′(𝑦)
0

 

=
1

 1 + (𝑓′ 𝑦 )2
 −

𝑐𝑜𝑠𝜃
𝑓′(𝑦)
𝑠𝑖𝑛𝜃

 ≔  

𝑁1

𝑁2

𝑁3

  

𝑑𝑋 =
𝜕𝑋

𝜕𝑦
𝑑𝑦 +

𝜕𝑋

𝜕𝜃
𝑑𝜃 = 𝑓 ′ 𝑦 . 𝑐𝑜𝑠𝜃𝑑𝑦 − 𝑓(𝑦). 𝑠𝑖𝑛𝜃𝑑𝜃 

𝑑𝑌 =
𝜕𝑌

𝜕𝑦
𝑑𝑦 +

𝜕𝑌

𝜕𝜃
𝑑𝜃 = 𝑑𝑦 

𝑑𝑍 =
𝜕𝑍

𝜕𝑦
𝑑𝑦 +

𝜕𝑍

𝜕𝜃
𝑑𝜃 = 𝑓 ′ 𝑦 . 𝑠𝑖𝑛𝜃𝑑𝑦 + 𝑓(𝑦). 𝑐𝑜𝑠𝜃𝑑𝜃 

 

The pertinent wedge products 𝑑𝑋˄𝑑𝑌, 𝑑𝑋˄𝑑𝑍 and 
𝑑𝑌˄𝑑𝑍 are thus computed. 

𝑑𝑋˄𝑑𝑌 = (𝑓 ′ 𝑦 . 𝑐𝑜𝑠𝜃𝑑𝑦 − 𝑓(𝑦). 𝑠𝑖𝑛𝜃𝑑𝜃)˄𝑑𝑦
= 𝑓(𝑦). 𝑠𝑖𝑛𝜃𝑑𝑦˄𝑑𝜃 

𝑑𝑋˄𝑑𝑍 = (𝑓 ′ 𝑦 . 𝑐𝑜𝑠𝜃𝑑𝑦

− 𝑓(𝑦). 𝑠𝑖𝑛𝜃𝑑𝜃)˄(𝑓 ′ 𝑦 . 𝑠𝑖𝑛𝜃𝑑𝑦
+ 𝑓(𝑦). 𝑐𝑜𝑠𝜃𝑑𝜃) = 𝑓′(𝑦). 𝑓(𝑦)𝑑𝑦˄𝑑𝜃 

𝑑𝑌˄𝑑𝑍 = 𝑑𝑦˄ 𝑓 ′ 𝑦 . 𝑠𝑖𝑛𝜃𝑑𝑦 + 𝑓 𝑦 . 𝑐𝑜𝑠𝜃𝑑𝜃 

= 𝑓 𝑦 . 𝑐𝑜𝑠𝜃 𝑑𝑦˄𝑑𝜃. 

We hereby recall the volume element for S, which has 
been identified previously to be: 
𝑑𝑆 = 𝑁1𝑑𝑌˄𝑑𝑍 − 𝑁2𝑑𝑋˄𝑑𝑍 + 𝑁3𝑑𝑋˄𝑑𝑌 

=
𝑓(𝑦)𝑐𝑜𝑠2𝜃 +  𝑓 ′ 𝑦  

2

. 𝑓 𝑦 + 𝑓(𝑦)𝑠𝑖𝑛2𝜃

 1 +  𝑓 ′(𝑦) 2
𝑑𝑦˄𝑑𝜃 

=
𝑓 𝑦  1 +  𝑓 ′ 𝑦  

2

 

 1 +  𝑓 ′(𝑦) 2
𝑑𝑦˄𝑑𝜃 

= 𝑓 𝑦  1 +  𝑓 ′ 𝑦  
2

𝑑𝑦˄𝑑𝜃. 

Hence, “Volume” of 𝑆 is obtained as 

 𝑑𝑆 =   𝑓 𝑦  1 +  𝑓 ′ 𝑦  
2

𝑑𝑦˄𝑑𝜃
𝑦1

𝑦2

2𝜋

0𝑆

=  2𝜋. 𝑓 𝑦  1 +  𝑓 ′ 𝑦  
2

𝑑𝑦
𝑦1

𝑦2

→ (𝟐) . 

 Worthy of note in the formula (𝟐)derived 

above, the term  1 +  𝑓 ′ 𝑦  
2

𝑑𝑦seen as part of the 

integrand is the element of arclength 𝑑𝑠 – a crucial 
differential 1-form required for solving any intrinsic 
integral along the curve [𝑥 = 𝑓 𝑦 ].  A great advantage 
of manifolds of revolution in the Euclidean 3-space 
(which is the ambient space of least dimension of 
interest) is that computation of their volumes reduces 
to a problem of evaluating line integrals, as opposed to 
other manifolds whose volumes have to be determined 
by evaluating a multiple integral after processing a 
comprehensive change of coordinate systems over the 
entire manifold via the standard Riemannian metric 
([1], Page 62).  This identified advantage extends to 
manifolds of revolution in higher dimensions, as we 
shall investigate in the succeeding conclusive section.  
The requirements for determining volumes of 
manifolds with axial rotational symmetry are volumes 
of appropriate balls and spheres, as compatible with 
the standard Riemannian metric.    

CONCLUSION 

The reader should again make reference to the diagram 
used in the previous section for the geometric analysis 
to be done here; extrapolating our results to higher 
dimensions.  When rotating the section D  by2𝜋 radians 
about the y-axis in ℝ𝑚 , an open manifold of revolution 
would be obtained, given that the x-axis levels out a 
hyperplanecontaining all other axes (but the y-axis) 
from our limited perspective in the Euclidean space.  
Any hyperplane[𝑌 = 𝑦]for 𝑦2 ≤ 𝑦 ≤ 𝑦1  would therefore 
intersect the open manifold of revolution as a ball in 
this latterhyperplane with radius 𝑓 𝑦 .The volume of 
the m-dimensional open manifold of revolution may be 
obtained by integrating the (𝑚 − 1) dimensional ball 
volumes for 𝑦2 ≤ 𝑦 ≤ 𝑦1 .  We hereby arrive at the 
following proposition. 

Proposition 1: The volume of the open set of 
revolution for the section Dby 2𝜋 radians about the y-
axis in ℝ𝑚 is given as: 



International Journal of Innovative Studies in Sciences and Engineering Technology (IJISSET) 

ISSN 2455-4863 (Online)                                       www.ijisset.org                            Volume: 6 Issue: 2 | 2020

 

© 2020, IJISSET                                                                                                                                                                                 Page 76 

 𝑉𝑜𝑙[𝐵𝑚−1 0, 𝑓 𝑦  ]𝑑𝑦  ,
𝑦1

𝑦2

 

where𝐵𝑚−1 0, 𝑓 𝑦   denotes the(𝑚 − 1) dimensional 

ball centered at the origin with radius 𝑓 𝑦 .  This 
proposition is immediately verified to corroborate the 
result (𝟏)derived explicitly in the previous section. 
Moreover, this proposition is verified to validate the 
formulae for volumes of the unit balls in ℝ𝑚 (𝑚 ≥ 3), 

wherein 𝑓 𝑦 =  1 − 𝑦2 ∶ −1 ≤ 𝑦 ≤ 1. 

  When rotating the curve [𝑥 =
𝑓 𝑦 ]bounding the 2-dimesional section Dabout the y-
axis in ℝ𝑚 , a hypersurface of revolution would be 
obtained, given thatthe x-axis levels out 
ahyperplanecontaining all other axes (but the y-axis) 
from our limited perspective in the Euclidean space.  
Any hyperplane[𝑌 = 𝑦] for 𝑦2 ≤ 𝑦 ≤ 𝑦1  would 
therefore intersect the hypersurface of revolution as an 
(𝑚 − 2) dimensional sphere in this latter hyperplane 
with radius 𝑓 𝑦 . The volume of the  𝑚 −
1dimensional hypersurface of revolution may be 
obtained by integrating the (𝑚 − 2) dimensional 
spherical volumes for 𝑦2 ≤ 𝑦 ≤ 𝑦1 .  We hereby arrive at 
the following proposition. 

Proposition 2: The volume of the hypersurface of 
revolution for the curve [𝑥 = 𝑓 𝑦 ] bounding the 2-
dimesional section Dby2𝜋 radians about the y-axis in 
ℝ𝑚 is given as: 

 𝑉𝑜𝑙[𝑆𝑚−2 0, 𝑓 𝑦  ]𝑑𝑠  ,
𝑦1

𝑦2

 

where𝑆𝑚−2 0, 𝑓 𝑦   denotes the (𝑚 − 2) dimensional 

sphere centered at the origin with radius 𝑓 𝑦 and   

𝑑𝑠 =  1 +  𝑓 ′ 𝑦  
2

𝑑𝑦   is the element of arclength on 

the differentiable curve. 

This proposition is immediately verified to corroborate 
the result (𝟐) derived explicitly in the previous section. 
Moreover, this proposition is verified to validate the 
formulae for volumes of the unit spheresin ℝ𝑚 (𝑚 ≥ 3), 

wherein 𝑓 𝑦 =  1 − 𝑦2 ∶ −1 ≤ 𝑦 ≤ 1. 

 A variety of theorems for multivariate 
integration may be visited to wield theoretical and 
computational benefits of the above included 
differential-form approach for determining volumes of 
manifolds.  For instance, we may visit Stokes’ theorem 
for differentiable manifolds-with-boundary ([1], Page 
172) to investigate the relationship between volumes 
of open sets and volumes of their boundaries.  The 
relevance of the above findings in geometric integral 
analysis is self-evident.  It is hoped that these findings 
would also be found relevant in a variety of other 
applied scientific research endeavors. 
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