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Abstract: Let (M,F) be a Berwaldian manifold. In this
paper, the evolution equations of Ricci curvature and
scalar curvature of (M,F) are given. As an application,
the nonnegativity of the Ricci curvature under the Ricci
flow is proved.
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1. INTRODUCTION

An evolutions equation of a metric, known as a Ricci
flow, is very important in many fields of mathematics
and physics [1]-[4]. In 1982, Hamilton [3] studied the
evolution of the Riemannian curvatures under the Ricci
flow.

The goal of this paper is to compute the evolution
equations, under the Ricci flow, of the Ricci and scalar
curvatures of a Finslerian Berwaldian manifold and
find some of their applications. For this reason, every
manifold is assumed to be connected and, any manifold
and all mappings are supposed to be differentiable of

classe C”.

The rest of this paper is organised as follows. In
Section 2, we give some basic notions on Finslerian
manifolds. The Section 3 is devoted to study the
Berwaldian curvatures. In the Section 4, we derive the
evolution equations of the Berwaldian Ricci and scalar
curvature. As application we prove, in Section 5, the
nonnegativity of the Berwaldian Ricci curvature.

2. RELIMINARIES

Let M be an n-dimensional manifold. We denote by T.M
the tangent space at X€M and by TM:=U.nT:M the
tangent bundle of M. Set 'IO"M=TM\ {0} and 11: TM—M:
m(x,y)—x the natural projection. Let (x..,x") be a local
coordinate on an open subset U of M and (x%,...x"y",...,y")
be the local coordinate on 11’ (U) CTM.

coordinate bases
)
{ §ton: 0 I et

i’
respectively, for TM and cotangent bundle T'M. We use
Einstein summation convention: repeated upper and
lower indices will automatically be summed unless
otherwise will be noted.

Definition 1. A function F:TM—M: [0,o0) is called a
Finslerian metric on M if :
(1) Fis C” on the entire slit tangent bundle ”.IO"M
(2) Fis positively 1-homogeneous on the fibers of TM,
that is
Vc>0, F(x,cy)=cF(x,y),
(3) the Hessian matrix (g;(X, y))1<ijs» With elements

L& F%(x,y)
2 Ayiogyd

gij(z y) ==

is positive definite at every point (x, y) of ™.

Consider the differential map 11. of the submersion I
TM—M. The vertical subspace of TTM is defined by

V:=ker(11.) and locally spanned by the set{F 1<i<n},

on each H'I(U)CYO"M

An horizontal subspace H of TTM is by definition any
complementary to V. The bundles H and V give a
smooth splitting

TTM=H® V. (2.2)

An Ehresmann connection is a selection of a horizontal
subspace H of TTM. As explain in [5], H can be
canonically defined from the geodesics equation.

Definition 2. Let :TM~M be the restricted projection.
(1) An Ehresmann-Finsler connection of 11 is the
subbundle H of TTM given by
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H :=ker0, (2.3) Lemma 1. [5] Let (M,F) be a Finslerian manifold and g

where 8: TTM—1"TM is the bundle morphism defined
by

9]

1 ) L
= — @ —(dy" + Nidz’). 2
t Ep 2 F[dy N;dx!) (2.4)
(2) The form O: T"f"M*H*TM induces a linear map
Ql(x,y)-' T(x,y)TM—'TxM (2.5)

for each point (x,y) E"f"M; where x = 11(x, y).
The vertical lift of a section & of m*TM is a unique
section v(&) of TI'M such that for every (x,y) €ETM,

o (V(E))/(x,y):o(x,y) and G(V(g))/(x,y)zg(x,y)- (2.6)

(3) The form 11.: TTM —1*TM induces a linear map

Dol Toy TM=T.M 2.7)
for each point (x,y) GfM; where x = I1(x, y).

The horizontal lift of a section & of m*TM is a unique
section h(&) of TTM such that for every (x,y)€ETM,

H* (h(E))/(x,Y)=E(x,y) and e(h(g))/(x,y)=0(x,y)- (28)

We have the following.
Definition 3. A Finslerian tensor field T of type
(q,0;p1,p2) on TM is a C~ section of the tensor bundle

q
M. e MeTTMa .. T TM ‘.T_:-®1."T'.-U. (2.9)

pi—times pa—tim

Remark 1. In a local chart,

T=T% Oy ..o,

2 Aptl @ @ el
£1.m iy L ondpg =de' @.. &dr

where

(O, @ @0, @' @ @dr'™ @ @ ®e™ Va1 npoie {1 nt jefl,. )2

is a basis section of this tensor and, the

- 9_ a5 well as 7= are respectively the basis
dxrr

sections for I*TM and T'T°M dual of TTM.

O, =

Examples 1.
(1) The fundamental tensor g is of type (0,0;2,0).
(2) The Ehresmann-Finsler form 6 is of type (1,0;0,1).

The following lemma defines the Chern connection
onIr*TM.

its fundamental tensor. There exists a unique linear
connection V on the vector bundle 1*TM such that, for
all X,YEX('IO”M) and for every & n€(r*TM), one has the
following properties:

(i) V1. Y-Vl o= . [X,Y],

(ii) X(g(&,1))=g(Vx&1) + g(& Tx1)+2A(O(X),E,1)

where the tensor 4 :=
is of Cartan. One

o i o
2 ﬁ?dﬁ @dr @ dok

has
O @ Lo (09 duwe Ogik .
V.t g = e U= 90" (G + 5 — @10
[ 8 i i bl .
5 = g~ iy = hgg) jith Vi = Ty 2.11)
Loz a2~y l‘r';u.--‘J},_| P '

Definition 4. Let F be a Finslerian metric on an n-
dimensional manifold M and x€M. F is called a Berwald
metric if, for a local coordinate (x;y;)i-1... in YQ'M the
Christoffel symbols I'; of the Chern connection are only
functions of the point x in M.

Example 2. All Riemannian metrics and locally
Minkowskian metrics are examples of Berwald metrics.
In fact,

(1) for Riemannian metrics,

4

il (f'fy_;a . o, f"!)..:r--)

Jat T B Al

T { |
ik = ik = 24

In particular, the functions I'*; are independant of'y.
(2) for locally Minkowskian metrics, in a neighborhood

U of a point x€EM , the functions I"™*;vanish

identically. Hence, on U, I'*; can depend at most on x.

3. BERWALD RICCI AND SCALAR CURVATURES

Definition 5. The full curvature associated with the
Chern connection V on the vector bundle m*TM over
the manifold TM is the application

o XTM) X (TM) < T(x"TM) -

(X, V.6 = alX,Y)E

(" TM)
VxVye— ViVl = Vixyt

By the relation (2.2), we have
Vi=Vx+Vy,

where X=X+X with X€I'(H) and X€I'(V). Using the
metric F, one can define the full curvature of V as:
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BE,n, X Y) = gla(X, Y], n)
GO X, V)E + o[ X, V)E + o( X, V)E + o(X,Y)E, )
= REX)Y)+PERXY)+Q(E g X, Y,
where

RENXY)=g(@XNEN),PENXY)=g(0X,V)En+g(pX
DEN) and QENXY=g(@(X,Y)EM) are respectively
the first curvature, mixed curvature and vertical
curvature. In particular, if V is the Chern connection,
the Q-curvature vanishes. In a local coordinate system,
the components of the Chern curvature are:

A b + )
ars,
I TE

e O+ ) = RO, 8y, D+ S, 0h + D)+ P, B3, Dy +

L a1, N S
(ﬁ - rj-';"? ).'?__m + (l e = Tl L)f? -

B, dj, e +

dy
[ER D]

Remark 2. In local coordinate, the curvatures R and P
can also be found in [6].

If F is a Berwaldian metric then, by the Definition 4, the
curvature associated with the Chern connection is

ars  ari . N
B k Jjs + (l al' — Tl ;.-.~).Ujr

- - 3.2)
dxk da! (-2

P = (

where @y = (9, dj, O + i, O + O).

With respect to the Chern connection, we have the

following.

Definition 6.

(1) The Berwaldian Ricci tensor Ric of (M,F) is defined
by

Ric(£, X) = trace, {a; [ R{.\'.hm} + ¥l u}:]{;" i (3.3)

(2) The Berwaldian scalar curvature Scal of (M,F) is
defined by

Seal = h‘m‘ﬁg(Ric)_ g = Ty (3.4)
Locally, we have

e AR art, art, ' J

N - R TR T S 3
Ric(d;. dh + ) Tk oal + I3y — 3. (3.5)
and

ort, or, 0\ Lk
Seal — (WE STy Pirk g™, (.6)

4. THE EVOLUTION EQUATIONS OF THE
BERWALD RICCI AND SCALAR CURVATURE

Consider a manifold M, a one-parameter family {F:}:e00

of Finslerian metrics on M of scalar flag curvature [7]

and {gdecon its associated family of fundamental

tensors. We call the Finslerian horizontal Ricci

deformation the evolution equation on (M,F,) given by
i

53’ = —2Riep, with Fi|y = F

.1

where g; is the pullback of g. by the submersion m:
T™M—M.

The existence of solutions of (4.1) is known in special
cases, particulary in Berwald spaces, [1].

We obtain the following.

Lemma 2. Under the Ricci flow of a Berwaldian
manifold (M,F), the Christoffel symbols I'%; satisfies the
following evolution equation

ark
ot

= §"( = ViRic;, — V,Ric; + V Ric,;)

+29* g Ric, o (Vigy + Viga — Vigy)-

Proof. The Lemma 2 is obtained by using the equation
(4.1) and the fact that

= = ot 1 = —
ot 99 "ot
= 2¢°%¢"Ric,,. 4.3)
O

In the sequel, we use the Berwaldian Bianchi identity
given in the

Lemma 3. If &Nl (r+TM) and X,Y,Z€x(TM) then

(Vz®) (6,1, X, V) + (Vxd) (€0, Y, Z) + (Vyd) (£,7, Z,X) = 0. “4.4)

Proof. The Lemma 3 is obtained from the symmetry of

V and the Jacobi identity.
|

By contracting twice on equation (4.4) written in a
local coordinate, we have
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}Vchal — ViRic(d,, 8,). @5) Hence, we have the following:
2 Theorem 2. Under the Ricci flow of a Berwaldian

Using this last relation and by the fact that Rici:=gi@iu
we get

dRic,,  dgl!
ot ot

10k

ikt + 97— (4.6)

It follows, from the Lemmas 2 and 3 and the equation
(4.6), that

Theorem 1. Under the Ricci flow of a Berwaldian
manifold (M,F), the Ricci tensor Ric satisfies the
following evolution equation

ORicy,
it

= ARicy, — 2Ric"'® ;5 — 297 Rici;Ricy, + By, 4.7

where

B ‘-’Rirw(‘_'r.ou + Vigy — vr-.w\) (Vrg®g™ +g" Vig")
2Ricy,(Vigir + Vighe ~ Vogie ) (Vig"a” + 9#V 19" )
12979 [V iRicy, (Vige + Vg ~ V.g1)
}Rr’c,.,,(V;. Vigir + ViVig V*.Vr.g”)]
299" [ViRicya (Vigir + Vigee — Vegic)
Ric, (ViVigi + ViVt~ ViV, |
Vg fv,-mc,-, | V:Ric,, V,Rici,-)
Vg (ViRics, 1V Ric \T,R;'c,-ﬂ.)
gh('\_fkvrki(_';, | V.V Ricy vkv,..m,-,)
r,g"'(v,-v,mm. V;\T,Rfc,-,\.]. (4.8)

with V; = 3 and A = g9 0.

Now, with respect to the Berwaldian scalar curvature

we have
Seal By - ORic;,
. - R- " ik i
i or ik Ty
T VR . ORie;,
= (29™g7 S0 Ricy, + g* = (4.9)

Using the relation (4.3) and the Theorem 1, we obtain

IScal A
— e Ricy, )
i /
Lo ( ARiey, — 2Rie!' B,y — 27 Ric,;Ricy, H;;.)

20* ¢ Riey. + AScal + By, {4.10)

manifold (M,F), the scalar tensor Scal satisfies the
following evolution equation

(‘)S(' al F;

o = 244" Ric;, + AScal + ¢"* By..
i

.11

5. APPLICATION: NONNEGATIVITY OF THE
BERWALDIAN RICCI CURVATURE

We use the following result given in [3], which
generalizes the maximum principle to tensors. Let i be
a vector field, gi , Ma and Ny be symmetric tensors on a
compact manifold X which may all depend on time t.
Suppose that Ny=p(Mi,gs) is a polynomial in My formed
by contracting products of My with itself using the
metric. Require that this polynomial satisfies the
condition that whenever v' is a null-eigenvector of My
so that Myv'=0 for all k then one has N*v'v'>0. Then the
following result is proved.

Lemma 4. [3] Suppose that on 0<t<T

i) )

%‘um = AM; + '8, My + N, 5.1)
o7
where Ny=p(Migs) satisfies the null-eigenvector
condition above. If M;>0 at t = 0, then it remains so on
O<t<T.

Now, we have the following.

Theorem 3. Suppose that the evolution equation (4.7)
has a solution on the interval O<t<T. If Ricyx20 at t=0
then Ricy>0 on O<t<T.

Proof. The Theorem 3 follows by using the Lemma 4
with u*=0, My=Ricy and Ny=-2Ric;Pu—2gsRicyRici+By.
[

6. CONCLUSION

With the main results of this work, we are studying the
evolution equation of the Finslerian Einstein curvature
and its applications.
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