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Abstract:  Let (M,F) be a Berwaldian manifold. In this
paper,  the  evolution  equations  of  Ricci  curvature  and
scalar curvature of (M,F) are given.  As an application,
the nonnegativity of the Ricci curvature under the Ricci
flow is proved.
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1. INTRODUCTION

An evolutions equation of a metric,  known as a Ricci
flow, is very important in many fields of mathematics
and physics [1]-[4]. In 1982, Hamilton [3] studied the
evolution of the Riemannian curvatures under the Ricci
flow.

The  goal  of  this  paper  is  to  compute  the  evolution
equations, under the Ricci flow, of the Ricci and scalar
curvatures  of  a  Finslerian  Berwaldian  manifold  and
find some of their applications. For this reason, every
manifold is assumed to be connected and, any manifold
and all mappings are supposed to be differentiable of

classe C∞. 

 
The  rest  of  this  paper  is  organised  as  follows.   In
Section  2,  we  give  some  basic  notions  on  Finslerian
manifolds.  The  Section  3  is  devoted  to  study  the
Berwaldian curvatures. In the Section 4, we derive the
evolution equations of the Berwaldian Ricci and scalar
curvature.  As  application we prove,  in  Section 5,  the
nonnegativity of the Berwaldian Ricci curvature.

2. RELIMINARIES

Let M be an n-dimensional manifold. We denote by TxM
the  tangent  space  at  x∈M and  by  TM:=Ux M∈M TxM  the
tangent  bundle  of  M.  Set M=TM\{0}T̊M=TM\{0}  and  π:  M→M:T̊M=TM\{0}

π(x,y)→x the natural projection. Let  (x1,...,xn) be a local
coordinate on an open subset U of M and (x1,...,xn,y1,...,yn)
be the local coordinate on π-1(U) TM⊂TM . 

The  local  coordinate  system  (xi){i=1,...,n} produces  the
coordinate bases  

respectively, for TM and cotangent bundle T*M. We use
Einstein  summation  convention:  repeated  upper  and
lower  indices  will  automatically  be  summed  unless
otherwise will be noted. 

Definition  1.  A  function  F:TM→M:  [0,∞) is  called  a
Finslerian metric on M if :

(1) F is C∞ on the entire slit tangent bundle MT̊M=TM\{0} ,
(2) F is positively 1-homogeneous on the fibers of TM ,
       that is 
       c>0, F(x,cy)=cF(x,y),∀c>0, F(x,cy)=cF(x,y),
(3) the Hessian matrix (gij(x, y))1≤i,j≤n with elements

is positive definite at every point (x, y) of  M.T̊M=TM\{0}

Consider the differential map  π∗
 of the submersion  π:

M→MT̊M=TM\{0} .  The  vertical  subspace  of T MT̊M=TM\{0}  is  defined  by
V:=ker(π∗) and  locally  spanned  by  the  set
on each π−1(U) M.⊂TMT̊M=TM\{0}

An horizontal subspace  H  of  T MT̊M=TM\{0}  is by definition any
complementary  to  V.  The  bundles  H  and  V give  a
smooth splitting 

                                                                                                
                                                    T M =H  V.                     T̊M=TM\{0} ⊕ V.                     (2.2)

An Ehresmann connection is a selection of a horizontal
subspace  H  of  T MT̊M=TM\{0} .  As  explain  in  [5],  H can  be
canonically defined from the geodesics equation.

Definition 2. Let : M→Mπ T̊M=TM\{0}  be the restricted projection.
(1) An Ehresmann-Finsler connection of π is the
       subbundle H of  T MT̊M=TM\{0}  given by

© 2020, IJISSET                                                                                                                                                                           Page 71



International Journal of Innovative Studies in Sciences and Engineering Technology
(IJISSET)

ISSN 2455-4863 (Online)                                                www.ijisset.org                              Volume: 6 Issue: 1 |  2020

                                               H := ker ,                                 θ,                                 (2.3)

where : T M→θ,                                 T̊M=TM\{0} π∗TM is the bundle morphism defined
by

(2) The form : T M→θ,                                 T̊M=TM\{0} π∗TM induces a linear map

     |θ,                                 (x,y): T(x,y) MT̊M=TM\{0} →TxM                                                        (2.5)

for each point (x,y) M; ∈MT̊M=TM\{0} where x = (x, y).π
The  vertical  lift  of  a  section   ξ of π∗TM  is  a  unique
section v( ) of T M  ξ T̊M=TM\{0} such that for every (x,y) M,∈MT̊M=TM\{0}

        π∗(v( ))|ξ (x,y)=0(x,y) and (v( ))|θ,                                 ξ (x,y)=ξ (x,y).                 (2.6)

(3) The form π∗: T M →T̊M=TM\{0} π∗TM induces a linear map

                            π∗|(x,y): T(x,y) MT̊M=TM\{0} →TxM                              (2.7)

for each point (x,y) M; ∈MT̊M=TM\{0} where x = (x, y).π
The horizontal lift  of a section   ξ of π∗TM  is a unique
section h( ) of T M ξ T̊M=TM\{0} such that for every (x,y) M ,∈MT̊M=TM\{0}

        π∗(h( ))|ξ (x,y)=ξ (x,y) and (h( ))|θ,                                 ξ (x,y)=0(x,y).                (2.8)

We have the following.
Definition  3.  A  Finslerian  tensor  field  T of  type
(q,0;p1,p2) on M T̊M=TM\{0} is a C∞ section of the tensor bundle

Remark 1. In a local chart,

where 

is a basis section of this tensor and,  the
 are respectively the basis

sections for π∗TM and T*T0M dual of  T M.T̊M=TM\{0}

Examples 1.
(1) The fundamental tensor g is of type (0,0;2,0).
(2) The Ehresmann-Finsler form θ,                                  is of type (1,0;0,1).

       
The  following  lemma  defines  the  Chern  connection
on π∗TM .

Lemma 1. [5] Let (M,F) be a Finslerian manifold and g
its  fundamental  tensor.  There  exists  a  unique  linear
connection ∇ on the vector bundle π∗TM such that, for
all X,Y ( M)∈Mχ(T̊M) T̊M=TM\{0}  and for every  , (ξ η∈M π∗TM), one has the
following properties:
(i) ∇Xπ∗Y-∇Yπ X∗ = π∗[X,Y],
(ii) X(g( , ))=g(ξ η ∇X , ) + g( ,ξ η ξ ∇X )+2A( (X), , )η θ,                                 ξ η
where the tensor
is  of  Cartan.  One
has 

Definition  4.  Let  F be  a  Finslerian  metric  on  an  n-
dimensional manifold M and x M. F∈M  is called a Berwald
metric  if,  for  a  local  coordinate  (xi,yi)i=1,...,n in  MT̊M=TM\{0} ,  the
Christoffel symbols Γl

ij of the Chern connection are only
functions of the point x in M .

Example  2.  All  Riemannian  metrics  and  locally
Minkowskian metrics are examples of Berwald metrics.
In fact,
(1) for Riemannian metrics,      

 

 
      In particular, the functions Γk

ij  are independant of y.
(2) for locally Minkowskian metrics, in a neighborhood
       U of a point x M∈M  , the functions Γk

ij vanish  
      identically. Hence, on U, Γk

ij can depend at most on x.

3. BERWALD RICCI AND SCALAR CURVATURES

Definition  5. The  full  curvature  associated  with  the
Chern connection  ∇ on the vector bundle  π∗TM  over
the manifold M T̊M=TM\{0} is the application

By the relation (2.2), we have

                      ∇X=∇X̂+∇X̌,

where  X= +X̂ X̌ with  (H)X̂∈MΓ  and  (V).  X̌∈MΓ Using  the
metric F, one can define the full curvature of ∇ as:
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where
R( , ,X,Y)=g( ( ,Ŷ)ξ,η),) , ),ξ η φ(X̂,Ŷ)ξ,η), X̂ ξ η P( , ,X,Y)=g( ( , ) , +g( (ξ η φ(X̂,Ŷ)ξ,η), X̂ Y̌ ξ η φ(X̂,Ŷ)ξ,η), X̌
,Ŷ)ξ,η),) , )  ξ η and  Q( , ,X,Y)=g( ( , ) , )ξ η φ(X̂,Ŷ)ξ,η), X̌ Y̌ ξ η  are  respectively
the  first  curvature,  mixed  curvature  and  vertical
curvature.  In particular,  if   is  the Chern connection,∇ is the Chern connection,
the Q-curvature vanishes. In a local coordinate system,
the components of the Chern curvature are:

Remark 2. In local coordinate, the curvatures R and P
can also be found in [6].

If F is a Berwaldian metric then, by the Definition 4, the
curvature associated with the Chern connection is

where

With  respect  to  the  Chern  connection,  we  have  the
following.
Definition 6. 
(1) The Berwaldian Ricci tensor Ric of  (M,F) is defined
       by

(2) The Berwaldian scalar curvature Scal of (M,F) is
       defined by

Locally, we have

and 

 

4. THE EVOLUTION EQUATIONS OF THE
      BERWALD RICCI AND SCALAR CURVATURE

Consider a manifold M, a one-parameter family {Ft}t [0, )∈M τ)

of Finslerian metrics on  M  of scalar flag curvature [7]
and  {gt}t [0, )∈M τ)  its  associated  family  of  fundamental
tensors.  We  call  the  Finslerian  horizontal  Ricci
deformation the evolution equation on (M,Ft) given by

where  gt is  the  pullback  of  gt by  the  submersion  :π
M→M .T̊M=TM\{0}

The existence of solutions of (4.1) is known in special
cases, particulary in Berwald spaces, [1].

We obtain the following.
Lemma  2.  Under  the  Ricci  flow  of  a  Berwaldian
manifold (M,F), the Christoffel symbols Γk

ij satisfies the
following evolution equation

Proof. The Lemma 2 is obtained by using the equation
(4.1) and the fact that

In the sequel, we use the Berwaldian Bianchi identity
given in the
Lemma 3. If , ( TM) ξ η∈MΓ π∗ and X,Y,Z ( M)∈Mχ(T̊M) T̊M=TM\{0}  then

Proof. The Lemma 3 is obtained from the symmetry of
 and the Jacobi identity.                                                     ∇ is the Chern connection,

By  contracting  twice  on  equation  (4.4)  written  in  a
local coordinate, we have
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Using this last relation and by the fact that Ricik:=gjlΦijkl

we get

It follows, from the Lemmas 2 and 3 and the equation
(4.6), that
Theorem  1. Under  the  Ricci  flow  of  a  Berwaldian
manifold (M,F), the  Ricci  tensor  Ric  satisfies  the
following evolution equation

where

Now, with respect to the Berwaldian scalar curvature
we have

Using the relation (4.3) and the Theorem 1, we obtain

Hence, we have the following:
Theorem  2.  Under  the  Ricci  flow  of  a  Berwaldian
manifold  (M,F),  the  scalar  tensor  Scal satisfies  the
following evolution equation

5. APPLICATION: NONNEGATIVITY OF THE
     BERWALDIAN RICCI CURVATURE

We  use  the  following  result  given  in  [3],  which
generalizes the maximum principle to tensors. Let uj be
a vector field, gik , Mik and Nik be symmetric tensors on a
compact manifold X which may all depend on time t.
Suppose that Nik=p(Mik,gik) is a polynomial in Mik formed
by  contracting  products  of  Mik with  itself  using  the
metric.  Require  that  this  polynomial  satisfies  the
condition that whenever  vi is a null-eigenvector of  Mik

so that Mikvi=0 for all k then one has Nikvivi>0. Then the
following result is proved. 

Lemma 4. [3] Suppose that on 0<t<τ)

where  Nik=p(Mik,gik) satisfies  the  null-eigenvector
condition above. If Mik>0 at t = 0, then it remains so on
0<t< .τ)

Now, we have the following.
Theorem 3. Suppose that the evolution equation (4.7)
has a  solution on the interval  0<t<τ).  If  Ricik≥0 at  t=0
then Ricik≥0 on 0<t< .τ)

Proof. The Theorem 3 follows by using the Lemma 4
with uk=0, Mik=Ricik and Nik=−2RicjlΦijkl−2gjlRicijRickl +Bik .

6. CONCLUSION

With the main results of this work, we are studying the
evolution equation of the Finslerian Einstein curvature
and its applications.
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