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Abstract: In this paper, we present a combination 
between the Renormalization Group Theory (RGT) and 
the MS-GEC to characterize the surface impedance of a 
multifractal Cantor set at a high fractalization stage. In 
fact, due to their scale invariance and the non-integer 
fractal dimensions, multifractal shapes are classified as a 
critical phenomenon, and they are very adapted to the 
Renormalization Group Theory mechanism. When 
applying the Multiscale-Generalized Equivalent Circuit 
(MS-GEC) method in its current form to analyze 
thesurface impedance of multi-fractal planar structure 
at infinity fractalization level leads to huge matrix size 
which block the solution, in addition to an increasing 
code volume and more CPU and memories resources 
must be provided with loss of accuracy. 

 To overcome these difficulties and to save computing 
resources, a combination between the MS-GEC and the 
Renormalization Group Theory RGT is applied to 
characterize the surface impedance of the multifractal 
Cantor set. The idea is:  knowing the renormalization 
function and its fixed point we can deduce the surface 
impedance of our multifractal structure at the infinity of 
the fractalization stage without the need to the detailed 
electromagnetic computation.  

Keywords: Renormalization Group Theory, Multifractal 
geometry, Electromagnetic Diffraction, surface 
impedance. 

1. INTRODUCTION 

Fractal and multi-fractal geometry has inspired many 
researchers in there working field. Since it has been 
mathematically founded by Mandelbrot and Falconer 
[1], such structure has been studied and applied in 
many scientific fields like medicine [2], [3], biology [4] 
image and signal processing [5] as well as in antennas 
and electromagnetic in which we are interested in .In 
fact, designing a Cantor fractal printed antenna has 
improved the antennas performances: bandwidth and 
gain, for ISM band application [6]. Comparing to the 
rectangular patch antennas with its tow dimension 
width and length the fractal antenna has more 
geometrical parameter that gives more flexibility to 
control the antenna performances in addition to the 
diversity of fractal geometry as the Koch like 
antennas[7][8][9][10] which cover the WAN LAN WIFI 
bands. 

Also fractal structure has been deployed in RFID tag 
[11] where a modified multi-fractal Cantor chipless 

RFID to enhance the read range was designed , in 
addition to the IoT application through a frequency 
reconfigurable Fractal circular patch antennas 
combined to diode pin [12]. 

In front of the increasing deployment of fractal and 
multifractal structures in RF applications a deep 
understanding of their electromagnetic behavior 
becomes a necessity. Hence the study of their surface 
impedance  were also attractive for many researchers : 
in [13], the fractal Cantor planar structure is 
considered as a planar discontinuity put transversally 
inside a wave guide. The Multi-Scale Generalized 
Equivalent Circuit [14] method (MS-GEC) is used to 
compute its surface impedance through the diffraction 
operator 𝛤 . Splitting the fractal structure to an 
elementary structure and replacing it by their 
impedance operator 𝑍𝑠

 in the next fractalization stage, 
the impedance operator 𝑍𝑠

  is constructed by selecting 
the active modes which are the strongly coupled modes 
between two adjacent elementary substructures 
applying this formulation at higher iteration level of the 
fractal became hard and needs huge computing 
resources. And the MS-GEC presents a limitation when 
fractalization tends to infinity. 

 To overcome this limitation, we focus on an interesting 
feature of fractals which is their self-similarity or 
scaling invariance which let them classified as a critical 
phenomenon. In fact the dimension is non integer and 
they present an exponent anomaly letting fractal 
measurements very adequate to the Renormalization 
Group theory mechanism which was first introduced in 
Quantum Filed and phase transition studies.   

This property of fractals is also too interesting in 
studying their electromagnetic wave diffraction 
through the application of the Renormalization Group 
Theory on a fluctuation like the surface impedance 𝑍𝑠  
verifying: 

𝐸  = 𝑍𝑠 𝑛  × 𝐻     

We organize our work as follow: first, we present the 
multifractal planar geometry generated by Iterated 
Function System (IFS), precisely the multifractal Cantor 
set. In second part we introduce the Multiscale 
Generalized Equivalent Circuit Method: MS-GEC. In the 
third part we present the Renormalization Group 
Theory (RGT) concept and its steps. And finally, we 
apply in steps the surface impedance model 
formulation combined to the RGT to compute the 
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surface impedance for Cantor set multifractal planar 
structure at the infinite.  

2. CONSTRUCTING MULTIFRACTAL GEOMETRY 
BY ITERATED SYSTEM FUNCTION 

The most practical and useful technique for generating 
fractal or multi-fractal geometry is the use of similar 
contractors, known as the Iterated System Functions: 
(ISF).As defined by Falconer in [15] a similar 
contractor is a linear function S defined by 
 𝑆𝑖 𝑥 − 𝑆𝑖 𝑦  = 𝑐𝑖 𝑥 − 𝑦  where  0 < 𝑐𝑖 < 1 and x, y 
are two points in space. A finite family of contractors 𝑆𝑖 : 
 𝑆1 , 𝑆2 ,… , 𝑆𝑚   is named an Iterated System Function 
which operates recursively on the generator and leads 
to a complex fractal or multifractal geometry. On figure 
1 we show the two contractors 𝑆1  and  𝑆2  which 
operates recursively on the generator E for two 
fractalization levels. 

 
Fig -1: Iterated Function System scheme 

2.1 Properties of fractals 

The IFS constructed fractal or multifractal are 
characterized by their self-similarities: from scale to 
scale the fractal is composed of scaled copies of itself.  
In another word: a given fluctuation defined on scale 
𝑠1can be also deduced from those on the scale 𝑠2 . 

Their invariant set, named also attractor, is defined by 

𝐹 =  𝑆𝑖 𝐹 

𝑚

𝑖=1

 

which is very interesting when applying the 
renormalization group theory, it is the fixed set of the 
fractalization and the fluctuation also converge to fixed 
value. 

Mathematically the fixed set is defined as: if 
𝑆 𝐸 =  𝑆𝑖 𝐸 

𝑚
𝑖=1  S has a unique fixed set that verify 

𝑆 𝐹 = 𝐹 moreover 𝑆𝑘 𝐸 → 𝐹 when k→ ∞ , 

𝑆𝑘 𝐸 = 𝑆 𝑆𝑘−1 𝐸   

Non integer Dimensions: 

As defined in [16] the Hausdroff dimension of fractal 
geometry defined by IFS  is  ‘s’ :  solution of the 
equation below: 

 𝑐𝑖
𝑠 = 1

𝑚

𝑖=1

 

The solution can be single number and the geometry is 
named fractal with its fractal dimension s or it can be 
also more than one number and the geometry is 
qualified by multifractal and it has multi fractal 
dimension.  

2.2 The Multifractal Cantor set 

 
Fig -2: Multifractal Cantor set 

The figure 2 represents the generator, the iteration 1 
and iteration 2 of the multifractal Cantor set. The same 
process applied previously on fractal can be done with 
different scale of the contractors: instead using the 
same contraction in 𝑓1and 𝑓2 we adopt a different 
scaling for both x and y axis since it is a planar shape. 

𝑆 =  
𝑓1 𝑥, 𝑦 =  

1

4
𝑥, 𝑦 

𝑓2 𝑥, 𝑦 =  
1

2
𝑥 +

𝑎

2
,
1

2
𝑦 

  

The use of Iterated System Function defines the fractal 
or the multifractal in unique way as described in []. In 
fact having the IFS and the generator is sufficient to 
build the fractals and they act as a key generation of the 
fractal. It was used for chipless RFID tag to give them 
more security in their geometry [17]. This gives more 
security to avoid malware reproduction 

Applying the MS-GEC to compute the surface 
impedance of fractal or multifractal planar structure at 
high iteration level is a time consuming and it needs an 
important computing resources. And it became 
impossible when fractalization goes to infinity.  
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To overcome these difficulties we combine the 
renormalization group theory with MS-GEC to compute 
the surface impedance of multifractal structure.  

The fractal shape are a particular case of the 
multifractal ones so our study will be done one a 
multifractal structure and we can deduce the surface 
impedance for fractal one. 

3. RENORMALIZATION GROUP METHOD 
COMBINED TO MS-GEC SURFACE IMPEDANCE 
SURFACE MODELING 

3.1 Application of the Multi-Scale Equivalent Circuit 
Method 

The multifractal planar structure is considered as a 
discontinuity in the transverse section of the 
waveguide as presented on figure 3.  

 
Fig -3: Discontinuity inside rectangular waveguide 

The rectangular waveguide with the perfect horizontal 
electrical conductor (PEC) and perfect vertical 
magnetic conductor (PMC) is excited by its 
fundamental mode which is the TEM mode denoted𝑓0. 
The electric current density on each side of the plan π 
inside the waveguide is related to magnetic field by:  

𝐽1   = 𝐻1
     × 𝑛1      

𝐽2
    = 𝐻2

     × 𝑛2      

Only the tangential components of the electromagnetic 
field to be considered. So if S1 and S2 are too close to 
the discontinuity surface S we can write:  

𝐸1
     = 𝐸  = 𝐸2

      

𝐻1
     − 𝐻2

     = 𝐽 × 𝑛1       =>𝐽 =  − 𝐽1   + 𝐽2
      

As described in [] the equivalent circuit scheme of the 
electromagnetic problem of figure is schematized by 
the circuit on the figure 4 below. 

 
Fig 4: Equivalent electrical circuit model of 

electromagnetic diffraction problem 

Where 𝑍 =    𝑓𝑚 ,𝑛
𝑇𝐸   𝑚 ,𝑛 𝑧𝑚 ,𝑛

𝑇𝐸   𝑓𝑚𝑛
𝑇𝐸   +    𝑓𝑚𝑛

𝑇𝑀   𝑚𝑛 𝑧𝑚𝑛
𝑇𝑀  𝑓𝑚𝑛

𝑇𝑀   

is the impedance operator related to the tangential TE 
and TM components of the electric field in relation with 
the impedance mode𝑧𝑚 ,𝑛

𝑇𝐸  , 𝑧𝑚𝑛
𝑇𝑀  . 

𝐽 = −𝐽𝑒 is the induced current on the metallic parts of 
the surface discontinuity here is the multifractal planar 
structure. 

By applying the Galerkin method we deduce the surface 
impedance seen by the fundamental mode of the 
structure: 

𝑍𝑠 𝑓 =
𝑉0

𝐼0
=

1

𝐴𝑡𝐵𝐴
 

Where 𝐴 =  
 𝑓0 𝑔𝑒1 

⋮
 𝑓0 𝑔𝑒𝑃  

  ,the 𝑔𝑒𝑖 𝑖 𝜖 1. .𝑃  are the current 

trial functions defined on the conductor subdomains of 
the generator and they verify the limits conditions on 
the junctions between the waveguide PEC and PMC .  

𝐵 =  𝐵𝑝𝑞   

Where𝐵𝑝𝑞 =   𝑔𝑒𝑝  𝑓𝑚𝑛
𝑇𝐸+𝑇𝑀 𝑚𝑛 𝑧𝑚𝑛

𝑇𝐸+𝑇𝑀 𝑓𝑚𝑛
𝑇𝐸+𝑇𝑀 𝑔𝑒𝑞   

𝑓𝑚𝑛
𝑇𝐸+𝑇𝑀are the  𝑚,𝑛  TE and the TM field components 

mode. The𝑧𝑚𝑛
𝑇𝐸+ 𝑇𝑀  are the impedance of the  𝑚,𝑛 mode 

related to the transverse electrical and magnetic fields. 

In the aim of enhancing the surface impedance 
computation of the multifractal structure  at infinity the 
Multiscale technique is used: In the case of multifractal 
Cantor set, we model on figure 5 the first iteration by 
twosub surface impedances based on the scaled 
generator elements like when we apply the IFS. So 
thesurfaceimpedance of the first iteration is modeled 
by twosurface impedance of the generator scaled by 
the IFS contractors:    

 

 
Fig -5: The Multiscale scheme modeling. 

The equivalent circuit of electromagnetic problem is 
shown on figure 6. 
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Fig -6: Equivalent electrical circuit model of 

electromagnetic diffraction problem of Figure 5 

 

To check the validation of the proposed model on 
figure 6 we compute the surface impedance of the first 
iteration with two different manners : by applying 
directly the MS-GEC-MoM to the first iteration: we 
define trial functions on each metallic parts, the surface 
impedance is named Zs_direct in the second hand by 
the model presented at figure 6 where trial function are 
defined only on the tow domain characterized by their 
sub surface impedancesof the generator scaled by the 
IFS, which are previously computed, and it is named 
Zs_model . On figure 7 we present both of them: 
Zs_direct and Zs_model. We can deduce that the 
proposedsurface impedance model is in accordance 
with thesurface impedance at least for an interval of 
the frequency simulation  

 
Fig -7: Surface impedance vs model surface impedance 

 
On the frequency interval where there is accordance 
we can deduce that the surface impedance of the 
considered iteration1is depending on the previous 
iteration scaled by the IFS dilatation coefficients:   
𝛼1,𝛽1 ,𝛼2,𝛽2 that means  

𝑍𝑠
 𝑛−1  𝛼1𝑎,𝛽1𝑏  𝑎𝑛𝑑 𝑍𝑠

 𝑛−1  𝛼2𝑎,𝛽2𝑏  
So we can write for a fixed frequency that  
 

𝑍𝑠
 𝑛  𝑎, 𝑏 = 𝑓  𝛼1𝛽1

𝑍
𝑠1

(𝑛−1) , 𝛼2𝛽2
𝑍
𝑠2

(𝑛−1)  

 

The function 𝑓 is a recurrence relation on surface 
impedance. The gain here is the reduction of matrix 
dimension by reducing the number of trial functions, in 
another word, instead of defining current trial 
functions on each metallic part of the multifractal 
planar structure they will be defined only on two parts. 
Second, knowing the function 𝑓  and the surface 
impedance of the generator parametrized with 

𝑍𝑠
 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟  

 𝛼𝑎,𝛽𝑏  and we can deduce the surface 
impedance of finite 𝑛𝑡𝑕  iteration by applying the 
function 𝑓 recursively. But when fractalization goes to 
infinity the MS-GEC is inapplicable: first, because the 
generator will be too small to a point that its surface 
impedance incomputable; second at infinity of a 
fractalization level the dimension of the multifractal 
Cantor set is not an integer as usual in Euclidian 
geometry  so defining current trial function became a 
hard task and we can say that it is not possible at all, 
these are the major limitations of the MS-GEC when 
dealing with fractal and multifractal planar structures. 

3.2 Application of the Renormalization Group 

theory  

To overcome the MS-GEC-MoM limitations when 
dealing with electromagnetic diffraction by multifractal 
planar structure, in our case the multifractal Cantor set 
through the surface impedance characterisation we 
apply the Renormalization Group mechanism resumed 
in 4 steps below:  

The first step is decimation: it consists in regrouping 
elements of the initial system hierarchically in small 
groups or blocs at each step of decimation a scale is 
defined on each bloc we compute the input impedance 
of the bloc at the considered scale. The second step is 
the scale changing: instead of studying in details the 
previous scale (n-1) it will be replaced at the 
considered scale (n) by an average value of the 
fluctuation which is here the input impedance so the 
actual scale will be simplified by reducing details in it.  

The first and the second steps of the renormalization 
group mechanism are shown and explained on figure 4: 

In our case the decimation and the scale changing are 
ensured by the Iterated Function System and the MS-
GEC as shown on figure 5. 

The third step is the Renormalization relation and 
effective parameter transformation which consists in 
replacing real parameters by effective ones in the 
renormalization relation relating the surface 
impedance of the considered fractalization level to the 
previous one in the aim to have a renormalization 
group transformation independent of scale coefficients. 

The relation of renormalization transformation is 
deduced from the circuit presented on figure 6 by 
applying the electrical circuit theory the relation is in 
equation  

Inwhich we we replace real parameters by the effective 
parameters: 

 𝑍𝑠2
(𝑛−1)

 
′

=  𝛼2𝛽2𝑍𝑠2
(𝑛−1)

 

 𝑍𝑠1
(𝑛−1)

 
′

=  𝛼1𝛽1𝑍𝑠1
(𝑛−1)
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The fourth and the last step is the fixed point 
calculation: when applying iteratively to the infinity the 
renormalization group transformation it will converge 
to the critical fixed point; as it converges geometrically 
to a fixed set. 

𝑍𝑠
′ = 𝑍𝑠1

′ = lim
𝑛→∞

 𝑍𝑠1
(𝑛−1)

 
′
 

𝑍𝑠
′ = 𝑍𝑠2

′ = lim
𝑛→∞

 𝑍𝑠2
(𝑛−1)

 
′
 

So we can compute the input surface impedance at 
infinity by solving graphically on figure 8 the equation 
of the fixed point defined as:  

𝑍𝑠
′ = 𝑓 𝑍𝑠

′ , 𝑍𝑠
′   

 

Fig -8: Graphical determination of thefixed point. 

We plot on the same graph the curve presented by  

𝑍𝑠
 𝑛 = 𝑓 𝑍𝑠

 𝑛−1  ,𝑍𝑠
 𝑛−1   

And the  𝑍𝑠
 𝑛 = 𝑍𝑠

 𝑛−1  

The intersection between the two curves gives fixed 
point. 

Table 1: Surface impedance computation comparison 

between MS-GEC-MoM and MS-GEC-RGT. 

 MS-GEC-MOM 
modeling 

MS-GEC-RGT 
modeling 

Memory 187.4MB 67.3MB 
Matrix size 3844 1936 
Computing time 0h15m53s 0h8m45s 

 𝑍𝑠
9 =  𝑍𝑠

∞  
   ( fixed point) 

7.82Ω/s 7.9Ω/s 

A comparison between the two modeling techniques on 
table 1  prove that due to the MS-GEC-RGT  we reduce 
the matrix size by 49.63 % leading to save memory 
usage by 64.08% and computing time by 43.85% with 
an interesting accuracy in impedance surface value at 
an infinite fractalization level with an error of 1.02% 

 

 

3. CONCLUSIONS 

Due to their scale invariance fractal and multifractal 
planar structure are classified as critical phenomenon. 
So it is suitable to combine the renormalization group 
theory mechanism to the Multi-Scale Generalized 
Equivalent Circuit (MS-GEC) to make the simulation of 
the surface impedance fluctuation of multifractal 
Cantor set at infinity level of fractalization possible 
simple and accurate besides saving time, memory and 
CPU resources. 
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