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Abstract: Scheduling problems involving earliness and 
tardiness penalties are critical for the operations 
management and in connection with just-in-time 
production and delivery, earliness as well as tardiness 
penalties are of interest. The objective of these problems 
is to minimize a summation of earliness and tardiness 
penalty costs.  In this paper, a previous proposed linear 
programming method of identifying binding constraints 
is applied to find an initial solution of the single machine 
early/tardy scheduling problem against a restrictive 
common due date. This method uses a proposed notion: 
the average of each constraint, and is highly useful when 
dealing with large linear programming problems where 
only a relatively small percentage of constraints are 
binding at the optimal solution. The method identifies 
binding constraints in linear programming formulation 
of scheduling problems and more specifically, identifies 
whether a job is finished before (earliness), or after 
(tardiness) the specified due date. The knowledge of 
binding constraints, reduces the size of the problem and 
produces an initial solution which is close or identical to 
the optimal solution in problems where the optimal 
solution can be calculated. The method is applied on 400 
instances of single machine scheduling problems in total 
ranging from 10 to 200 jobs to identify binding 
constraints and its performance is measured over 40 
benchmark problems with 10 jobs taken from the open 
literature. The results are promising since the constraint 
identification was found able to propose solutions that 
are optimal or near optimal in the most restrictive 
against a common due date examined test problems. The 
method is also applied on test problems that optimal 
solutions can’t be calculated leading to significant 
reduction of their size, which is useful in case of large 
scheduling problems that demand space. 

Keywords: Job scheduling, Common due date, Binding 
constraints identification, Linear programming, 
Benchmarks  

1. INTRODUCTION 

This paper deals with the single-machine early/tardy 
scheduling problem of a set of jobs with a restrictive 
common due date and objective the minimization of the 
jobs’ total earliness and tardiness.  When scheduling 
against a common due date some of the jobs may be 
completed early (prior to the due date), while others 

are finished late. In both cases costs are incurred; early 
jobs cause holding costs while tardy jobs could result to 
penalties such as loss of customer goodwill, loss of 
reputation and loss of orders. Therefore, earliness as 
well as tardiness of jobs should be discouraged.  

Common due-date problems have been studied 
extensively during the last years and many 
approximate algorithms have been proposed for 
various versions of the basic problem.  Since Kanet’s [1] 
work, many researchers have extended this 
contribution proposing new algorithms [2-11]. The 
majority of the proposed algorithms for addressed 
instances of the problem with a small number of jobs, 
up to 25 or 50 jobs. Recently, the use of meta-heuristics 
enabled researchers to address these problems more 
effectively [12-17]. Moreover, Biskup & Feldman [18] 
generated a set of benchmarks for single-machine 
early/tardy scheduling problems together with their 
upper bounds on the optimal objective functions.   

A major objective of this work is to show how a 
proposed linear programming method for identifying 
binding constraints can be applied with success on 
these problems. The underlying idea, is to use the 
identified binding constraints of common due date 
problems in linear programming form to obtain an 
optimal or a near optimal solution. The application in 
10 jobs problems was promising, and the results could 
be considered as an initial solution and used combined 
with other methods in problems with more jobs.  

The contribution of this method, is to produce an initial 
solution based on the binding constraints of the linear 
programming formulation. This method cannot replace 
the mentioned methods, however it may improve them 
by providing a feasible starting solution even in large 
scale problems, using only a relatively small amount of 
data of the problem. The experiments regarding the 
optimal solution have been carried out over the test 
instances of benchmarks for 10 jobs [18]. The 
application of the method in problems up to 200 jobs, 
identifies the binding constraints that lead to a near 
optimal solution. Since many scheduling problems are 
actually large scaled, the development of techniques for 
reducing considerably their dimension of the problem, 
is an inevitable need. This problem reduction, among 
others, results to less computational time and effort.  
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This paper is organized as follows: Section 2 states the 
problem, Section 3 gives a description of the proposed 
algorithm for identifying binding constraints and 
Section 4 presents and discusses the results of the 
experimental evaluations of the algorithm. Finally, 
Section 5 summarizes the contribution of the paper and 
states some directions for future work. 

2. PROBLEM FORMULATION 

2.1 Problem representation 

Consider 𝑛 jobs available at time zero, which have to be 
processed on a single machine. Each of these jobs needs 
exactly one operation. The processing times 𝑝𝑗  of the 

jobs 𝑗 = 1,2, … , 𝑛 are deterministic and known and 
preemption of jobs is not allowed. If the completion 
time 𝐶𝑗  of job 𝑗 is smaller than or equal to the common 

due date 𝑑, which is assumed as given, the jobs' 
earliness is  𝐸𝑗 =  𝑑 − 𝐶𝑗 . Accordingly, a job 𝑗 is tardy 

with the tardiness  𝑇𝑗 =  𝐶𝑗 − 𝑑, if its completion time is 

greater than the common due date d As it is not known 
in advance whether a job will be completed before or 
after the due date, earliness and tardiness are 
calculated as: 

𝐸𝑗 = max⁡(0, 𝑑 − 𝐶𝑗 )  

and 𝑇𝑗 = max⁡(0, 𝐶𝑗 − 𝑑) for all jobs 𝑗 = 1,2, … , 𝑛.  

The per time unit penalties of the job 𝑗 for being early 
or tardy are 𝑎𝑗  and 𝛽𝑗 , respectively. Penalties are 

incurred whenever a job is completed before or after 
this due date. Therefore, an ideal schedule is one in 
which all jobs finish on the specific due date.  

The objective is to jointly minimize the sum of earliness 

and tardiness penalties 𝑓 𝑆 =   𝑎𝑗𝐸𝑗 + 𝛽𝑗𝑇𝑗  
𝑛
𝑗 =1  (1) 

where S denotes a feasible schedule of the jobs. 

In objective function (1), the common due date 𝑑 might 
be a decision variable whose value has to be 
determined, or it might have been given externally. 
Suppose a due date 𝑑 >  𝑝𝑗

𝑛
𝑗 =1  is given; an (global) 

optimal schedule 𝑆 with the sequence of the jobs 
around this due date and its objective function value 
f(S) can be constructed. A common due date is called 
unrestrictive as long as the optimal schedule S (with 
f(S)) can be realized. Obviously, an (externally) given 
common due date, for which 𝑑 ≥  𝑝𝑗

𝑛
𝑗=1  is 

unrestrictive. Furthermore, the due date is called 
unrestrictive if it is a decision variable. To summarize, 
we refer to a common due date as unrestrictive, if the 
optimal sequence can be constructed without 
considering the (value of) the due date. Otherwise the 
common due date is called restrictive. Consequently, a 
problem can be considered as either unrestricted or 
restricted. The restricted version of the problem is 
obviously more difficult.  

The basic assumptions in restricted common due sate 
problems can be summarized as follows:   

 Machine breakdown and maintenance are 
neglected 

 The machine is continuously available and 
never kept idle while there are jobs waiting to 
proceed 

 The machine processes only one job at a time 

 Jobs are known in advance  

 Jobs are independent without precedence or 
other constraints. 

Furthermore, for restricted common due sate problem 
with general earliness and tardiness penalties there is 
an optimal schedule with the following properties:  

1) No idle times are inserted between consecutive 
jobs   

2) The schedule is V-shaped: the jobs 𝑗 which are 
completed at or before the due date 𝐶𝑗 ≤ 𝑑 are 

ordered according to non-increasing ratios  
𝑝𝑗

𝛼𝑗
 , 

𝑗 = 1,2, … , 𝑛 while the jobs 𝑗 whose processing 
starts at or after the due date 𝐶𝑗 − 𝑝𝑗 ≥ 𝑑 are 

sequenced in non-decreasing order of the ratios  
𝑝𝑗

𝛽𝑗
 , 𝑗 = 1,2, … , 𝑛      

3) The processing time of the first job either starts 
at time zero, or one job is completed at the due 
date.  

The value of a restrictive factor ℎ =  0.2, 0.4, 0.6, 0.8  
classifies the problems as less or more restricted 
against a common due date:  

𝑑 = 𝑟𝑜𝑢𝑛𝑑[ℎ 𝑝𝑗

𝑛

𝑗 =1

] 

where 𝑟𝑜𝑢𝑛𝑑[ℎ  𝑝𝑗
𝑛
𝑗=1 ] denotes the biggest integer 

which is smaller than or equal to ℎ  𝑝𝑗
𝑛
𝑗=1 .  

2.2 Linear programming formulation 

To obtain optimal schedules 𝑆 for small instances of 
this problem the following mixed-integer programming 
formulation is applied.   

Let 𝑠𝑗  and 𝑥𝑗𝑘  the decision variables, that determine the 

schedule S; 𝑠𝑗  is the corresponding variable to the 

starting time of job 𝑗 and 𝑥𝑗𝑘 : 

𝑥𝑗𝑘 =  
1, 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑑 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑗𝑜𝑏 𝑘 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  

  

A job can be sequenced, not necessarily directly, prior 
to another. Furthermore, let R be a large number. 

The objective is to find a schedule which minimizes (1) 
subject to the following restrictions: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑆 =   𝑎𝑗𝐸𝑗 + 𝛽𝑗𝑇𝑗  

𝑛

𝑗 =1
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑇𝑗 ≥  𝑠𝑗 + 𝑝𝑗 − 𝑑,  𝑗 = 1,2, … , 𝑛         (2)                                                                 

𝐸𝑗 ≥  𝑑−𝑠𝑗 − 𝑝𝑗 ,  𝑗 = 1,2, … , 𝑛    (3) 

𝑠𝑗 + 𝑝𝑗 ≤ 𝑠𝑘 + 𝑅(1 − 𝑥𝑗𝑘 ),  

 𝑗 = 1,2, … , 𝑛 − 1,  𝑘 = 𝑗 + 1,2, … , 𝑛    (4) 

𝑠𝑘 + 𝑝𝑘 ≤ 𝑠𝑗 + 𝑅𝑥𝑗𝑘 ,  

 𝑗 = 1,2, … , 𝑛 − 1, 𝑘 = 𝑗 + 1,2, … , 𝑛   (5)                    

𝑇𝑗 ≥ 0 ,  𝑗 = 1,2, … , 𝑛      (6) 

𝐸𝑗 ≥0 ,  𝑗 = 1,2, … , 𝑛         (7) 

𝑠𝑗 ≥0 ,  𝑗 = 1,2, … , 𝑛      (8)                                                                                          

𝑥𝑗𝑘 ∈  0,1 , 𝑗 = 1,2, … , 𝑛 − 1,  𝑘 = 𝑗 + 1,2, … , 𝑛   (9) 

The values for tardiness and earliness are calculated by 
constraints (3) and (3). Constraints (4) and (5) 
determine the starting times of the jobs: If job 𝑗 is 
sequenced prior to job 𝑘 the constraint (4) only holds 
if𝑥𝑗𝑘 = 1. Due to the addition of R (5) is not binding 

with𝑥𝑗𝑘 = 1. On the other hand, for 𝑥𝑗𝑘 = 0, (4) is not 

binding.  This formulation uses the order-dependent 
binary variables proposed by [19]. Thus, we have a 
minimization problem with a total of 2𝑛 variables and 
4𝑛 − 2 constraints without including in this number 
the positivity constraints and the binary variable 
constraints. Nevertheless, even in this formulation, the 
problem remains computationally demanding.  

Due to the complexity results of [7] and [8] it is most 
unlikely to find efficient algorithms for the restricted 
common due date problem (1). Only for small problems 
with up to 10 jobs was an optimal schedule found in a 
reasonable time by applying the mixed-integer 
programming formulation given in (1)-(9) and using 
standard software (LINGO and LINDO). Therefore 
problems with more jobs are usually approached using 
metaheuristics [12-17]. 

3. A BINDING CONSTRAINTS ALGORITHM 
IMPLEMENTATION TO THE RESTRICTIVE 
GENERAL PROBLEM 

For very large linear programming problems, only a 
relatively small percentage of constraints are binding 
at the optimal solution. In linear programming, a 
constraint is called binding if it is satisfied as an 
equality at the optimal solution, otherwise the 
constraint is called redundant. The proposed algorithm 
is a binding constraints identification method based on 
the weighted mean of the constraints of a linear 
programming problem, see [20]. The number of 
operations required in the proposed method is small 
compared to other known algorithms and its 
complexity is 𝑂(𝑚𝑛2), while no artificial variables are 
needed. The algorithm checks for binding constraints 
considering one decision variable each time. Using the 
weighted average and the intercepts of the constraints 
with the zero-level hyperplane of the variable under 
consideration, the algorithm moves from a constraint 

to an adjacent one until it locates a binding constraint. 
The method was applied in three sets of 1000 different 
random small, medium and large scale linear 
programming problems to check its efficiency in 
identifying binding constraints. Since there was no 
information about the constraints in these random 
problems, the proposed algorithm was considered as a 
statistical tool for correctly identifying binding 
constraints. The probability that binding constraints 
were identified correctly by the algorithm is 86.9%, 
89% and 94.2% in small, medium and large scale 
problems respectively.  

Given an instance with 8 jobs (𝑛 = 8) and the following 
data (Table 1), the optimal objective function value can 
be obtained by applying the above linear programming 
formulation (1)-(9).  

In this problem, the total sum of the processing times of 
the jobs is  𝑝𝑗

8
𝑗=1 = 70. For the restrictive problem 

with 𝑑 = 0.2 ∗  𝑝𝑗
8
𝑗 =1 = 14, the optimal solution is 

equal to 1066. The method presented in [20] was 
applied in a problem with 8 jobs to identify the binding 
constraints that lead to the optimal solution. 

Table1: Example instances for 𝑛 = 8 

 𝒋𝟏 𝒋𝟐 𝒋𝟑 𝒋𝟒 𝒋𝟓 𝒋𝟔 𝒋𝟕 𝒋𝟖 

𝒑𝒋 7 1 18 6 13 14 13 8 

𝒂𝒋 2 8 4 9 5 5 7 4 

𝜷𝒋 14 7 8 9 7 9 5 14 

𝒑𝒋

/𝒂𝒋 

3.5 0.13 4.5 0.67 2.6 2.8 0.71 1.5 

𝒑𝒋

/𝜷𝒋 

0.5 0.14 2.3 0.67 1.86 1.56 1 0.43 

 

According to linear programming form (1)-(9), in this 
problem there are 30 constraints: constraints 1-8 refer 
to tardiness, constraints 9-16 refer to earliness, while 
constraints 17-23 and constraints 24-30 determine the 
starting times of the jobs. Applying the proposed 
algorithm, the identified binding constraints from 
different weighted means, are: 

 18,  1,  9, 17, 19,  5, 21, 22, 23, 30, 26 

 15, 16,  2,  1, 10, 18,  4,  5, 21,  7,  8, 30, 26 

 18,  9,  4, 30, 17, 12,  5, 21, 22, 23, 26 

 25,  5, 30, 26, 13, 28 

 16, 12,  7, 30, 17, 18, 19,  5, 21, 15, 23, 26 

 18,  9,  8, 30, 17, 19,  5, 21, 22, 16, 26 

Depending on the frequency of the constraint 
identification, the fifth job should be considered tardy 
while the first and eighth jobs should be early. The 
second job is identified in the set of the constraints 
having the biggest length and can be characterized as 
either early or tardy. If this job is considered early, the 
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optimal schedule is obtained. Early and tardy jobs are 
placed according to scheme V and the order of all early 
jobs is 𝑆𝐸 = {1, 8, 2} while for all tardy jobs, 

 𝑆𝛵 = {4, 7, 6, 5, 3}. In this procedure, we focused on the 
tardiness and earliness constraints, while the 
constraints referring to the starting times of the jobs 
were used ancillary to the optimal schedule. 

The results of the proposed algorithm show that we 
need just 13 binding constraints to find the solution. 
Therefore, the initial problem of the 30 constraints is 
reduced to a problem of 13 constraints which leads to 
the optimal solution. The reduction of the initial 
problem dimension is about 56.67%. 

Table 2: The schedule for the n=8 problem instance 

obtained by the identification of binding constraints 
 𝒅 = 𝟏𝟒 

early tardy 

𝒋𝟏 𝒋𝟖 𝒋𝟐 𝒋𝟒 𝒋𝟕 𝒋𝟔 𝒋𝟓 𝒋𝟑 

7 6 1 6 5 14 13 18 

0 13 14 20 25 39 52 70 

 

4. EXPERIMENTAL ANALYSIS AND DISCUSSION 

The full computational results obtained by the 
proposed algorithm concerning the 10 jobs benchmark 
problems are summarized in Table 3. The optimal 
objective function values for the instances with 10 jobs 
are given in square brackets, if they are not obtained by 
the algorithm, otherwise, they are given without 
brackets. The underlined results, are nearer to the 
optimal solution than the results proposed by [18]. As 
it was mentioned, optimal solutions for these 
benchmarks only exist for the 10 jobs test instances 
and have been achieved using an integer programming 
formulation with LINDO software αναφορά, therefore 
the comparative results refer only to these problems, 
for four restrictive factors. The algorithm was also 
applied on the benchmarks problems with jobs ranging 
from 20 to 200, indicated the reduction of the size of 
these problems. Table 4 contains the above results. 
Since the proposed algorithm was tested in problems 
up to 1000 constraints according to linear 
programming formulation, benchmarks problems with 
jobs ranging from 500 to 1000 were not tested. 

Table 3: The optimal objective function values and the 
upper bounds for the 10 job examples  

 
n=10 

 

 𝒑𝒋

𝒏

𝒋=𝟏

 
 

h=0.2 
 

h=0.4 
 

h=0.6 
 

h=0.8 

k=1 116 1944 
[1936] 

1025 876 
[841] 

818 

k=2 129 1107 
[1125] 

615 877 
[615] 

759 
[615] 

k=3 125 1622 
[1586] 

940 
[917] 

906 
[793] 

869 
[793] 

k=4 102 2153 
[2139] 

1251 
[1230] 

815 906 
[803] 

k=5 94 1194 
[1187] 

649 
[630] 

563 
[521] 

726 
[521] 

k=6 88 1572 
[1521] 

908 797 
[755] 

873 
[755] 

k=7 103 2170 1496 
[1374] 

1182 
[1101] 

1163 
[1083] 

k=8 79 1720 1106 
[1020] 

630 
[610] 

576 
[540] 

k=9 92 1574 884 
[876] 

582 592 
[554] 

k=10 127 1869 1136 710 780 
 [671] 

The algorithm based on binding constraints 
identification, tends to find the optimal or near optimal 
solution in problems with the most restrictive due 
dates, while in problems with less restrictive dates 
tends to lead to higher upper bounds. In particular, for 
all the test problems with 10 jobs and h=0.2, the 
proposed algorithm leads to better or identical solution 
comparing to the results of [18]. Specifically, in 4 out of 
10 problems the proposed solution is identical and in 
the other 6 problems the obtained solution is better. 
The average improvement of these solutions is 53.70%. 
In these problems, Biskup & Feldmann‘s algorithm [18] 
fails to find exactly the optimal solution. For problems 
with h=0.4 and h=0.6 the proposed algorithm leads to 
the optimal solution in 4 and 2 problems respectively, 
while for problems with h=0.8 the algorithm fails to 
find the optimal solution of the schedule. Conversely, 
Biskup & Feldmann’s algorithm [18] succeeds in 
finding the optimal solution in problems with less 
restrictive due dates. The comparative results for h=0.2 
are illustrated in Chart 1. 

 
Chart -1: Comparing results for h=0.2 

The application of the algorithm indicated that for the 
10 instances of 10 jobs problem, the binding 
constraints demanded to find a solution were 13-16, 
14-17, 13-17 and 14-17 for ℎ =  0.2, 0.4, 0.6, 0.8 
respectively while for 20 jobs, the binding constraints 
were 21-27, 21-26, 22-25 and 21-29. For 50, 100 and 
200 jobs the binding constraints were 51-53, 103 and 
203 respectively. For problems from 100-200 jobs, the 
number of binding constraints is quite the same for all 
factors , however the identified constraints were 

different for each factor. Consequently, instead of the 
initial problem, we can use a reduced sized problem to 
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product a starting feasible solution. The results of the 
reduction as the average percentages of the 10 
instances for each job problem, are presented in Table 
4. It is obvious, that for larger problems (up to 100-200 
jobs) the reduction is greater than the reduction for 
small problems.  

Table 4: Average reduction of the size of the linear 

programming formulation for the 10, 20, 50, 100 and 

200 job examples  

 h=0.2 h=0.4 h=0.6 h=0.8 

n=10 61.32% 59.73% 61.32% 60.53% 

n=20 68.74% 67.65% 70.38% 69/99% 

n=50 73.63% 73.59% 73.64% 73.43% 

n=100 74.12% 74.12% 74.12% 74.12% 

n=200 74.56% 74.56% 74.56% 74.56% 

5. CONCLUSIONS 

In this paper an application of a proposed algorithm is 
presented for the restricted common due date problem.  
The method identifies binding constraints in linear 
programming problems, providing a starting feasible 
solution for the restricted common due date problem.  
As this problem is NP-hard the implementation of 
optimizing algorithms is difficult, however the 
application of the method in 10 jobs problems was 
promising.  The results could be considered as starting 
solutions and used in conjunction with other methods 
in problems with more jobs to construct more powerful 
algorithms. Furthermore, by identifying the binding 
constraints, the dimension of large scaled scheduling 
problems is reduced. Thus, the application of the 
method results to less computational time and effort. 
The method is quite general and can be rather easily 
modified, improved and applied to any other 
scheduling problem in future.  
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