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Abstract: In this paper, we consider two electrostatic 
systems and compute the magnitude of the electric field 
at points on the surface for each one. In the first one, the 
Laplace transform method is used to find the value of the 
electric field at points on an infinite plane of charge. In 
the second one, the Integral Fourier transform approach 
is used to derive the electric field on one plate of a 
parallel-plate capacitor. It is shown that, the electric 
field at points on the plate is zero for the first system and 
is exactly half its value between the plates of the 
capacitor for the second one. These techniques 
demonstrate their usefulness in determining the value of 
a discontinuous function at its point of discontinuity. It 
also helps undergraduate physics and engineering 
students to realize the advantage of the application of 
integral transforms when applied to physical problems. 
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1. INTRODUCTION  

The problem of determining the electrostatic field in 
space due to charged surfaces is discussed in 
introductory textbooks [1, 2]. The usual method for 
symmetrical charge distribution is through the 
application of Gauss’s law. However, the question of 
finding the electric field at points on such surfaces (like 
conducting charged sphere and charged planes) is 
avoided due to the discontinuity of the electric field at 
such points. The limits of the electric field as one 
approaches the surface from both sides are not equal 
and therefore the electric field is ill-defined on the 
surface. Students are usually not aware of this 
ambiguous situation and may assign one of the limiting 
values for the electric field on the surface. This is not a 
correct conclusion and one should admit the ambiguity 
of the electric field on the surface and care must be 
taken when dealing with such problems. In some 
situations, one has to assign a value for the electric field 
at its discontinuity points for the purpose of calculating 
other physical quantities. For example, Griffiths [3] 
calculated the electrostatic pressure on a charged 
conducting surface by using the average value of the 
electric field between its values inside and just outside 
the surface, but without rigorous proof, and obtained 
the well-known result for the pressure [4]. It is 
important for the students to know this discontinuity of 
the electric field [5, 6] and learn how to use it and to 
understand its ambiguity [7, 8]. In the light of this, the 
present paper deals with two specific systems which 

are familiar for undergraduate students. In the first 
system, we consider a uniformly charged large thin 
plate and derive the electric field at points on the plate 
using two methods: In the first method, we apply the 
Laplace transform approach and in the second, we use 
the expansion of the electric field in terms of Legendre 
polynomials. In the second system, we consider a 
parallel-plate capacitor and derive the electric field on 
one plate through the application of integral Fourier 
transform. 

2. THE ELECTRIC FIELD ON A PLANE OF CHARGE  

We consider an infinite plane of positive charge with 
uniform surface charge density, 𝜎. Assuming the plane 
to be aligned in the yz-plane, direct application of Gauss 
law yields the electric field E, at points on both sides of 
the plane, namely 

  (1) 

where 𝜀0 is the electric permittivity for free space. 
Clearly, the electric field is discontinuous at the surface 
of the plane of charge, since the electric fields on both 
sides of the plane are in opposite directions. The aim 
here is to derive the electric field at points on the plane 
(𝑥=0) through the application of Laplace transform 
which has been of great use over the years [9-15]. 
Using a decreasing exponential kernel with the function 
𝑓(𝑥) in equation (1), consider the following integral; 

 (2) 

Splitting the integrals into two parts and substituting 
the value of 𝑓(𝑥) for each part gives  

 (3) 

Letting 𝑥→−𝑥 in the first integral, we get 

  (4) 

Using the step function,  

    (5) 

equation (4) could be written as  

 (6)  
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Each integral of the above equation is the Laplace 
transform of 𝑈(𝑥) [16], namely  

  (7) 

so that equation (6) gives 

    (8)  

Therefore, with the result of equation (8), equation (2) 
becomes  

   (9) 

Note that, in the limit when 𝑠→∞, the kernel in 
equation (10) goes to zero except at the point of 
discontinuity (𝑥=0) of the function 𝑓(𝑥). In this limiting 
case, the exponential kernel becomes just a non-zero 
constant, and therefore the value of the function at its 
point of discontinuity must be zero in order the integral 
in equation (9) to vanish. So the conclusion is that 
𝑓(0)=0, which is evidently the average value between 
𝑓(𝑥) values for 𝑥<0 and 𝑥>0. Therefore, equation (1) 
gives 𝐸(0)=0, which shows that the electric field 
vanishes at the plane of charge. One concludes that the 
electric field at discontinuous points is the average 
value between its limiting values around that point. 

Another way to derive our above result is to expand the 
function 𝑓(𝑥) in equation (1) in terms of Legendre 
polynomials 𝑃𝑛(𝑥) as  

    (10)  

Multiplying both sides of equation (10) by 𝑃𝑚(𝑥) and 
integrating from −1 to +1, we get 

   (11)  

where we used the orthonormality  

 

Since the function 𝑓(𝑥) is odd, then the integral in 
equation (11) vanishes for even parity of 𝑃𝑚(𝑥). 
Therefore, all expansion coefficients 𝐶𝑛 vanish for even 
n, and thus, we have 

   (12)  

Now our result is clear: For odd n, 𝑃𝑛(0)=0 so that the 
right hand side of equation (12) gives zero and 
therefore, 𝑓(0)=0. Hence, the electric field vanishes at 
points on the plane of charge. 

3. TWO INFINITE PARALLEL PLANES OF CHARGE  

Consider two infinite parallel planes (like parallel-plate 
capacitor) one carries uniform surface charge density 𝜎 
and the other –𝜎, with separation distance 2a between 
the planes. Direct application of Gauss law gives the 
electric field 𝐸=𝜎/𝜀0 between the plates and zero 

outside, so that the electric field is discontinuous at the 
plates due to the surface charge density. The object of 
this section is to find the value of the electric field on 
each plate through the Fourier integral approach. This 
approach has been of great applications over the last 
decade [17-21]. Let the positive plate positioned at 
𝑥=−𝑎 and the negative plate at 𝑥=𝑎, so that the origin of 
the coordinate system is at the midway point between 
the plates. Therefore, the electric field is given by 

    (13)  

which is of rectangular shape of height 𝜎/𝜀0 and width 
2𝑎. The electric field is symmetric about the plane 𝑥=0, 
so it suffices to take the cosine integral Fourier 
transform, 𝑔𝑐(𝜔) given by 

                                                                                                (14)  

which immediately gives, 

    (15)  

Taking the inverse cosine transform, one gets  

                                                                                                (16) 

Therefore, the integral in equation (16) is  

  (17)  

Evaluating the above integral at 𝑥=𝑎, gives  

 (18) 

where we used, 𝑢=2𝜔𝑎 and  

 

Therefore, equations (17) and (18) yield,  

at 𝑥=𝑎, our final result, namely  

     (19) 

The result in equation (19) shows that the electric field 
at the plane of charge is the average value between its 
values inside and outside the plates. 

4. CONCLUSION  

In this paper, two examples were given to find the 
electric field on a charged surface, at which the electric 
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field is discontinuous due to the presence of surface 
charge density. In the first example, the electric field 
was found on a plane of charge by two methods: The 
first by using the Laplace transform method and the 
second by expansion by Legendre polynomials. In the 
second example, a system of two parallel planes of 
opposite charges was examined and the electric field on 
one plane was calculated using the Fourier integral 
transform. In both examples, it was concluded that the 
electric field at points on the plane of charge is equal to 
the average value between its limiting values from both 
sides of the plane. The two examples presented in this 
paper have the advantage to help undergraduate 
students to apply mathematical techniques to physical 
systems in order to calculate some physical quantities 
that are not well-understood. 
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