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Abstract:-There is a perceived dissonance between 

physical laws which are symmetric in time, and the fact 

that there seems to be an arrow of time.  We analyze two 

arrows of time: the thermodynamic and the 

psychological. We provide an explanation of macroscopic 

irreversibility from the fact that entropy is epistemic not 

ontic. Irreversibility is therefore not a function of time, 

but rather probabilistic.  We generalize the notion of 

entropy, and discuss the maximal entropy principle that 

creates logical irreversibility. The psychological arrow 

comes from memory, which results from a maximal 

entropic mechanism. We analyze the memory using a 

generalized entropy modeland further clarify its 

statistical nature. 

Keywords: Entropy, Irreversibility, Second Law, 

Memory and Maximal Entropy Principle.  

1. INTRODUCTION 
 

Physical laws as we know them do not possess 

an arrow of time.  The laws are time reversal 

symmetric1.  Yet in everyday life we clearly experience 

an arrow of time.  We normally see entropy increasing 

with time, and we can only remember the past, but not 

the future. 

Below, we explain the thermodynamic and 

psychological arrows of time.  Time symmetric physics 

can explain the perception of both phenomena without 

directional preference.  We will also derive a more 

general formulation of entropy, as well as an entropic 

model of memory.  In doing so, we will clarify the 

nature of irreversibility. 
 

2. THERMODYNAMIC ARROW OF TIMEAND 
LOSCHMIDT’SPARADOX 

The second law of thermodynamics is often 

expressed as that the entropy of an isolated system 

                                                           
1  Whether physics is purely time-reversal symmetric as in 
classical physics and quantum mechanics, or CPT symmetric as in 
quantum field theory, one can construe physics to be time symmetric.  
In this paper, we only consider deterministic classic physics or 
unitary evolution in quantum physics.  We do not consider the 
Copenhagen interpretation of quantum mechanics, which is 
inherently time-irreversible.  The measurement problem poses an 
entirely different set of philosophical issues which we will not 
explore. 

increases with time monotonically, even though the 

underlying mechanics is time reversible.  This apparent 

contradiction, known as the Loschmidt’s Paradox, can 

be understood by studying what entropy really 

represents. 

 

2.1 Entropy and Missing Information 

Entropy is often loosely described as a 

measure of disorder. That lack precise meaning.  It is 

also said that thermodynamics variables are 

macroscopic while statistical mechanics gives 

thermodynamics a microscopic foundation.  Both 

statements can be viewed in light of the equivalence of 

the statistical and the informational entropy.   

Consider a classical system with 𝑛 identical 

particles.  From Newtonian dynamics, the system has 

6𝑛 degrees of freedom, with 3 positional and 3 

momentum degrees of freedom for each particle.  On 

the other hand, the number of macroscopic variables 

available to describe the system (such as  𝑛,𝐸,𝑉 ) is 

usually much fewer.  Therefore, a description of the 

system (the macrostate) is necessarily missing certain 

information.  Statistical mechanics makes probabilistic 

inferences about the system using only partial 

information.  The Gibbs entropy 𝑆𝐺 = −𝑘𝐵  𝑝𝑖 𝑙𝑛𝑝𝑖𝑖  

arises naturally as a measure of different possible 

microstates the system is in, under the constraints of 

{𝑛,𝐸,𝑉}.  By microstate, as opposed to the macrostate, 

we mean a full specification of the system in which 

every degree of freedom is specified with no missing 

information.  Here, 𝑛 is the number of particles, 𝐸 is the 

total energy, and  𝑝𝑖  is the probability of each possible 

microstate i. 

Shannon [11] defines the information entropy 

as 𝐻 = − 𝑝𝑖 𝑙𝑜𝑔⁡ 𝑝𝑖 𝑖 , where 𝑝𝑖  is the probability of 

each possible message 𝑖 passed through a 

communication channel.  This entropy is a measure of 

how much informational content any specific message 

carries, given the space of all possible messages {𝑖}.  It 

has been pointed out that the Gibbs entropy is only 

different from the Shannon entropy by a multiplicative 

factor and the Boltzmann constant 𝑘𝐵 , e.g. Jayne [7], or 

Frigg [4].  This is no surprise, as the statistical 

mechanic entropy is nothing but the measure of the 

missing information in the macroscopic 
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thermodynamic description of the physical system.  If 

all 6𝑛 variables of the microstate are known, that will 

constitute a complete description (message) of the 

system consisting of only one microstate.  This removes 

the informational deficiency, and entropy 𝑆 = −1 ∗

𝑙𝑛 1 = 0 will disappear.  Since one does not actually 

know the microstate, but only the macroscopic 

description, Gibbs entropy measures the information 

deficiency in such an incomplete description. 

 This observation suggests that entropy is 

really an epistemic variable, not an ontic one.  By that, 

we do not mean a sentient being is necessary for 

entropy to exist.  Rather, so long as information about a 

system is incomplete, entropy exists simply as a 

measure of the degree of that incompleteness.  The 

magnitude of such missing information is often called 

disorder or uncertainty.  Given a macroscopic 

description, more possible microstates imply more 

uncertainty, or a higher entropy.  In this paper, we will 

stick with the more precise terminology of information. 

In statistical mechanics, in addition to the 

known macro variables {𝑛,𝐸,𝑉}, one can use an 

additional indicator, i.e, the energy distribution of the 

particles in the μ-space in the Boltzmann formalism.  

This distribution can be measured through the system’s 

phenomenological thermodynamic behavior, while the 

underlying permutation of the particles cannot.  

Therefore, we ascribe a variable 𝐷 for the distribution 

of the 𝑛 particles to expand the macroscopic 

description to {𝑛,𝐸,𝑉,𝐷}, which still entails many 

possible microstates.  Different energy distributions 

have different entropies associated them, and hence 

the system’s entropy levels can vary.  For example, the 

canonical distribution (classically the Maxwell-

Boltzmann distribution) corresponds to the maximum 

possible entropy for any distribution, and also 

corresponds to thermal equilibrium. 

More accurately, the Gibbs formalism in the γ-

space makes explicit that one is not analyzing the 

microstate itself, but rather an ensemble of microstates 

with the same energy distribution.  Geometrically, the 

definitive microstate of the physical system is a point in 

the space of descriptive variables, with all 6𝑛 degrees 

of freedom specified.  On the other hand, the 

macroscopic description specifies only 3 coordinates, 

and constitutes a hypersurface covering regions of the 

γ-space, consisting of many microstates.  The system’s 

entropy is defined for the macrostate, while the 

entropy of a microstate (a single point) is by definition 

zero.  

We summarize the distinction between the 

microstate and the macrostate as follows: 

Table 1: Microstate vs. Macrostate 

Description Represents Entropy 
Microstate physical system 0 
Macrostate ensemble of systems − 𝑝𝑖 𝑙𝑛𝑝𝑖

𝑖

 

Description Information γ-Space Shape 
Microstate Complete point 
Macrostate Incomplete hypersurface 
 

2.2The Second Law and Irreversibility 
After setting the table for entropy, we can now 

interpret the second law properly as a probabilistic 

statement: at any point in time, it is more likely to find 

a system in a higher entropy macrostate than in a lower 

entropy macrostate.   

This is different from the traditional version, 

which asserts that entropy increases absolutely with 

time, or alternatively - irreversibly with time.  It is 

actually well known that the traditional description of 

the second law is not always true, but is merely a 

phenomenological heuristic.  There is the well-known 

fluctuation theorem.  Poincare’s recurrence theorem 

further proves that any specific entropy microstate will 

recur within finite time.   

Yet misunderstandings about irreversibility 

persist in the literature.  There is the common refrain 

that irreversibility is physical and empirically verified, 

but that statement fails to explain what cannot be 

reversed.  Collier [2] also says that reversible 

mechanics implies that there are as many systems with 

decreasing entropy as with increasing entropy, and 

does not quite provide a sufficient justification why 

reversal is improbable.  The basic distinction is the fact 

that the laws of microstate physics are reversible while 

the resulting physics of its macroscopic description is 

irreversible, without any contradictions. 

A visual illustration can help.  Consider the 

classical gas chamber.  Two microstates are illustrated 

in the diagrams below: 

 

    
 

 Fig -1: Low vs. High Entropy 

Typically, we call the State 1 a low entropy 

state because all particles are concentrated in the lower 

chamber, and the State 2 a high entropy state because 

State 1: Low Entropy State 2: High Entropy 
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the particles are somewhat evenly distributed between 

the two chambers.  If the separation of the two 

chambers is removed, one can believe State 1 becomes 

State 2, but State 2 will not become State 1.  Hence, the 

transition appears to be irreversible. 

However, this description is really a hand-

waving statement.  For example, look at the tow 

diagrams below (2 or 3).  They look similar.  However, 

at a specific future time, State 1 will evolve into one of 

the two diagrams below, not both.  We just do not know 

which one, unless we follow through the system’s 

evolution over time, with complete specification of all 

6n parameters. 

 

   
   

Fig -2: Different Microstate – Same Macrostate 

 
The problem is loose terminology.  When one 

says that State 1 evolves into State 2 irreversibly, one 

actually does not imply that the specific Microstate 1 

will go to the specific Microstate 2, but rather, 

“something like Microstate 1 will evolves into 

something like Microstate 2, IRREVERSIBLY.”   Or more 

precisely, the Macrostate 1 will evolve into Macrostate 

2 (which includes both microstate 2 and microstate 3), 

irreversibly.  Using Gibbs terminology, ensemble 1 will 

irreversibly evolve into ensemble 2.  Because the 

particles are a lot more likely to be evenly distributed 

than concentrated, one can expect macrostate 2 will 

almost never become macrostate 1.  It is statistical 

inference that gives us irreversibility of the macrostate.  

On the other hand, if we constrain ourselves to only 

descriptions of the microstate, the transition from 

microstate 1 to microstate 2 is no more likely than the 

transition from microstate 2 to microstate 1, hence 

microstate transitions are completely reversible. 

Thus, we conclude: the real distinction 

between the microscopic and macroscopic descriptions 

is not the difference in physical extent, but rather the 

number of physical microstates (phase space volume) 

that it entails, or equivalently, the quantity of unknown 

information as defined by the Shannon entropy.  A 

microstate is a point in the phase space, while the 

macrostate is a hypersurface with volume.  Even 

though microscopic dynamics (fully specified single-

state with no missing information) is reversible, 

macroscopic dynamics (partially specified ensemble 

with missing information) is irreversible.  A higher 

entropy macrostate (higher volume hypersurface) is 

more likely than a lower entropy macrostate (lower 

volume hypersurface).  Since observers inherently 

cannot observe the microstate, both entropy and 

irreversibility arise as an epistemic phenomenon. 

More rigorously, the physical system (the 

microstate) engaged in reversible dynamics always has 

entropy zero regardless of time.  On the other hand, its 

macroscopic description, i.e., the ensemble that the 

microstate corresponds to, which consists of all 

microstates with the same energy distribution, has 

varying entropy with time.  If the system starts in a 

microstate that corresponds to a lower entropy 

macrostate, it tends to migrate towards a microstate 

that corresponds to a higher entropy macrostate at a 

different time, due only to the fact that the latter is 

more probable (or has a larger phase space volume).  

Hence, the microstate is reversible, while the 

macrostate is irreversible.  The fact that empirically, 

one does see macroscopic irreversible processes in 

experiments is fully consistent with this view, hence no 

Loschmidt’s paradox.   

Several misconstructions about the second law 

can be settled from this perspective.  For example, the 

problems with Boltzman’s flawed H theorem is well 

known.  From our prior discussion, we know that 

entropy is only likely to increase but not always, and 

hence a theorem that predicts a quantity always 

decreases with time cannot be the right formulation of 

the second law. 

Secondly, the fact that Lousiville’s theorem 

implies Gibbs entropy is constant over time is another 

source of confusion.  Tolman [13] explains it away by 

using coarse graining of the ensemble γ-space, which 

does produce a monotonic H with time.  However, as 

Jayne [8] pointed out, that coarse graining is itself an 

artificial man-made procedure which cannot be the 

foundation of a true explanation. 

The mystery of the constant Gibbs H can be 

understood as follows.  Assuming an initial condition 

for the system, the phase space volume of its 

corresponding ensemble stays constant through time.  

However, the disconnect is this: the microstate of the 

system is not guaranteed to stay in that same ensemble.  

The second law tells us that the microstate will likely 

go to a higher entropy macrostate.  As that occurs, the 

ensemble of the system actually changes.  When that 

occurs, the entropy increases as a result.  The 

constancy of the Gibbs H only implies the original 

Microstate 2 Microstate 3 
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ensemble does not change its entropy, but the 

ensemble representing the system’s macrostate, 

actually does change with time.  At equilibrium, the 

entropy is maximized, however, that does not ensure 

the system staying in the maximum entropy ensemble 

either, as the fluctuation theorem tells us.   

Finally, Jayne’s [6] own explanation of the 

second law is fundamentally flawed.  It first equates 

Gibbs entropy with a concept of experimental entropy, 

and then introduces a variation of the Hamiltonian to 

the system, which causes the experimental entropy to 

increase in a new equilibrium, and the constancy of the 

Gibbs entropy through this process is then said to 

result in the second law.  This is incorrect in that a 

general entropy increase is supposed to occur under 

the condition of an isolated system, i.e., an invariant 

Hamiltonian.  In our description, entropy increase is 

valid as a probabilistic statement, without a change in 

the boundary conditions such as the Hamiltonian. 

These examples illustrates that when we talk 

about physical laws, it is imperative not to conflate 

microscopic physics with the macroscopic.  The 

conservation of the initial ensemble’s phase space 

volume in fact does not imply the system is bound to 

stay in the same ensemble.  Macrostate physics can be 

irreversible while the underlying microstate dynamics 

is reversible.  The nature of irreversibility is 

probabilistic, not time dependent. 

 

2.3Thermodynamic Arrow of Time 

If we assume the system at time 𝑡 = 0 is in a 

low entropy state 𝐿1 , and it evolves as time increases 

 𝑡 ↑  continuously according to physical laws, with the 

boundary conditions {𝑛,𝐸,𝑉} kept constant, we are 

more likely to find the system in a higher entropy state 

𝐿2  than 𝐿1  at 𝑡 > 0.  If the entropy label can be 

continuously observed, then we will even see a 

continuous evolution from lower to higher entropy.  It 

applies to any system, and for any entropy label.  This 

is the essence of a proper informational entropic 

interpretation of the thermodynamic arrow of time. 

Note this interpretation works exactly the 

same way in the opposite time direction  𝑡 ↓  as well.  If 

the boundary conditions are held the same, we are also 

likely to find the system in a higher entropy state 𝐿2at 

𝑡 < 0.  Our probabilistic reasoning simply states we are 

more likely to find it in a higher entropy state at 

another time, whether at -∆t, or at ∆t.  Since the 

reasoning is the same in either direction, witnessing 

entropy increase does not imply any time direction.  

Stated differently, time progression in either direction 

implies entropy increase, but entropy increase does not 

imply a particular time direction.  Hence, the 

thermodynamic arrow of time does not exist.  Entropy 

does not provide a preferred direction of time, or any 

arrow of time.   

In fact, time direction does not even enter into 

the reasoning.  Time symmetry of physical laws (the 

𝑡 → −𝑡 transformation) is a completely different type 

of argument from the statistical argument of higher 

entropy.  The former is a question of symmetry, while 

the latter is a question of measure comparison in a 

metric space.  Entropic irreversibility is not the same as 

time irreversibility.  It is all the more apparent if one 

considers that entropy is always zero when all 

microstate information is taken into account.  Hence, 

there is no arrow of time.  When discussing any 

system’s entropy as a whole, it is only meaningful 

relative to a specific definition of it.  In practice we 

witness systems going into lower entropy all the time, 

we just describe them as not isolated. 

Finally, when we see a system in a state of low 

entropy, the real question is how it got there in the first 

place?  As we shall see below, the right answer is 

usually the tongue-in-cheek one: because someone (or 

something) put it there.  What caused it to be in a low 

entropic state is that a different boundary condition 

existed prior, and what was high entropy before, is low 

entropy now.  Therefore, unlike the traditional 

explanation which is time-asymmetric, our time-

symmetric alternative interpretation in the next section 

will clarify the situation. 

 

3. GENERALIZED ENTROPY AND THE MAXIMAL 

ENTROPY PRINCIPLE  

 

3.1Generalized Entropy 

The previous discussion leads us to generalize 

the concept of entropy as a measure of the information 

discrepancy between the system’s macroscopic 

description and its fully specified microstate.   

Definition 1: Entropy 

When looking at a system, we can separate the 

descriptive variables of its state into three groups: 

 Variables describing the unknown and unobserved 

degrees of freedom, denoted as {𝑥1 …𝑥𝑓}; for future 

discussions, we assume these degrees of freedom 

remain unknown 

 Variables describing the macro state of the system; 

we can call them boundary conditions {𝐵1 …𝐵𝑔}; 

often these variables are assumed constant and 

invariant with time, but this is neither necessary 

nor always the case;  furthermore, these boundary 
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conditions can be imposed by the environment, 

and therefore can be construed as “inputs”; for 

example, the volume of an ideal gas system is set at 

𝑉 

 Lastly, an observable and measurable variable 𝐿 

not imposed by the environment, that further 

distinguishes among different macroscopically 

measurable states of the system; it partitions the 

microstates into mutually exclusive sub-spaces 

𝑈1 ,𝑈2 …𝑈𝐿 …𝑈𝑚 ; the entropy label partitions the 

phase space; each value of this variable 

corresponds to a different level of the system’s 

entropy  

We call this variable 𝐿 the entropy label.  It 

should be empirically observable and measurable.  

Given a specific value of 𝐿, we can label the set of 

microstates with this entropy label 𝐿 as 𝑈𝐿  , and each 

microstate in the subspace 𝑈𝐿  as 𝑖, 𝑖 = 1,2,…  . For a 

given 𝐿and 𝑈𝐿 , entropy is defined as 𝑆𝐿 = − 𝑝𝑖 𝑙𝑛𝑝𝑖𝑖∈𝑈𝐿
, 

where each 𝑝𝑖  is the conditional probability of a 

microstate 𝑖 within the subspace UL , and other 

macroscopic variables {𝐵1 …𝐵𝑔}. 

For future discussions, we will focus on the 

interaction of this variable with the environment.   

This set up matches statistical mechanics 

discussed above.  The boundary conditions {𝐵𝑗 } 

corresponds to the macroscopic variables: total particle 

number 𝑛, total energy 𝐸, and maybe total volume 𝑉.  

The entropy label 𝐿 corresponds to the energy 

distribution 𝐷, which is the canonical distribution at 

equilibriums.  Lastly, our entropy definition matches 

the Gibbs entropy with a multiplicative constant. 

This specification of the entropy label and its 

emphasis on the role of the information makes it 

explicit that entropy is epistemic.  Our definition of 

entropy is also different from the traditional one in an 

important way.  Usually it is said that entropy will 

increase in an isolated system, which does not interact 

with its environment.  However, the notion of an 

isolated system is deceptive.  For example, an ideal gas 

system is always assumed to have boundaries that 

physically constrain the particles.  Therefore, it is really 

assumed that the particles bouncing off the walls have 

no significance even as the walls restrict the total 

volume to 𝑉.   

Our notation does not make such implicit 

assumptions of insignificant interactions.  These 

boundary conditions do not imply specific conditions 

such as zero energy exchanges between the system and 

the environment.  Rather, all relevant information 

about such exchanges are contained in the boundary 

conditions {𝐵1 …𝐵𝑔}, which do not have to be invariant 

with time.  Under such conditions, the entropy is 

strictly defined to be a variable about information, even 

under conditions which are not traditionally 

considered isolated.  This important distinction will be 

a key to our discussions about memory below. 

 

3.2Maximal Entropy Principle 
Given a thermodynamic system with 

observable macroscopic variables, {𝑛,𝐸,𝑉}, using a 

maximum likelihood estimator under the ergodic 

hypothesis (Tolman [13]), or the maximum entropy 

principle (Jayne [6]), one can derive the system to be in 

the canonical energy distribution, which is the 

Maxwell-Boltzmann distribution in the classical 

setup.2This gives physicists (observers) an additional 

piece of information, which can be used to make 

further inferences.  Jayne [8] proved that in the 

canonical distribution the Gibbs entropy is equal to the 

Clausius thermodynamic entropy: 𝑆𝐺 = 𝑆𝐶 =  
𝑑𝑄

𝑇
.  This 

is how experimental entropy can be measured to 

validate statistical mechanics.   

The concepts of thermodynamic equilibrium 

and the canonical distributions are intimately related.  

Under the maximal entropy assumption, the second 

law indicates the system will likely stay in the same 

macrostate of highest entropy, which is exactly the 

definition of a thermodynamic equilibrium.  However, 

we note the maximal entropy condition is really an 

assumption.  It is only highly probable, not definitive.  In 

fact, if the system were to always have the maximal 

entropy, the second law would be meaningless.   

Phenomenological thermodynamics has 

achieved great empirical success under the equilibrium 

assumption.  It allows the processes to be studied as 

reversible ones (Fermi [3]).  Much knowledge was 

gained from macroscopic phenomenological principles 

alone.  Even the concept of system temperature is only 

well-defined for thermal equilibriums, known as the 

zeroth’s law of thermodynamics.  We note the validity 

of theory with experiments is not coincidental.  The 

maximally entropic assumption works well when the 

probability distribution of the system is sharply 

focused for systems of high degrees of freedom 𝑛 ≫ 1.   

                                                           
2  The reasoning of the quantum entropy in the density 

matrix von Neumann entropy −𝑇𝑟 𝜌𝑙𝑜𝑔𝜌  is completely analogous 
because the density matrix formulation assumes the system in a 
mixed state to have classical probabilities (not unitary transitions in 
quantum mechanics) associated with each possible pure state, and 
hence the meaning of the quantum entropy is exactly the same as that 
of a classical system with many possible microstates. 
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Jayne [7] may be the first to posit the maximal 

entropy as a general principle of statistical inference, as 

a philosophical extension of the principle of insufficient 

reason.  This is not without controversy, e.g., Uffink 

[14] disputes Jayne’s assertion that the Shannon 

entropy is the unique measure of information based on 

the consistency principle.  However, we do not rely on 

Jayne’s sweeping claim of the maximal entropy as a 

general principle.  Statistical mechanics is based on 

much more solid physical grounds.  The dynamical 

properties of particle collisions may justify an ergodic 

assumption about the phase space distribution of 

microstates.  At the same time, the Shannon entropy is 

monotonically increasing with respect to phase space 

volume (Frigg [4]).  This monotonicity property implies 

a larger ensemble is equivalent to a higher entropy.  

Our interpretation of the second law is based entirely 

on an inference on higher probabilities.  In situations 

the ergodic hypothesis is not justified but the 

probability distribution is still sharply focused, the 

deductions are still valid.  For the rest of the paper, we 

will use the terms maximal entropy in the sense of the 

highest probability. 

The maximal entropy method is much more 

widely used in physics than perhaps realized.  It is 

inevitable that we use macroscopic variables to 

describe systems with many more degrees of freedom.  

In situations where the maximal entropy state is 

overwhelmingly more probable than the rest, one can 

assume the system is indeed in the maximal entropy 

state (assuming sufficient time has passed), and thus 

make additional inferences without directly measuring 

the entropy level.  Our discussion of memory below will 

serve as an example. 

Using our generalized entropy notations, we 

provide an alternative explanation for a system to get 

into a lower entropy state.  Consider the system as 

defined before.  Under one set of boundary conditions 

{𝐵𝑗 }1 , the maximal entropy state is 𝐿1; however, if the 

boundary conditions change to {𝐵𝑗 }2, then the maximal 

entropy state changes to 𝐿2 .  Why do we witness low 

entropy states all the time around us, which move to 

higher entropy states?  Because the boundary 

conditions of that system have changed, what was a 

maximal entropy state now becomes a low entropy 

state under the new boundary conditions3, and we will 

witness a transition as a result.  However, we shall not 

                                                           
3 Our description corresponds to the traditional description of 

entropy change in which a system is not isolated and external 

influence caused a reduction of entropy. 

interpret that the words “prior” and “now”, or the past 

tenses as indicating that there is a time inference here.  

The exact same reasoning of maximal entropy applies 

equally well in reverse.  If boundary conditions change 

in the future, and the system’s entropy label is known 

in the future, our inference will be that the maximal 

entropy state in the past changes accordingly.  The 

informational entropic interpretation is time 

symmetric.   

Essentially, one can construe interpretations in 

which the environment changes the entropy label by 

tweaking the boundary conditions.  Under the old 

boundary conditions, the system is presumed to be an 

old maximal entropy macrostate. By changing the 

boundary conditions, one can force the system into the 

new maximal entropy state under the new boundary 

conditions.  With that paradigm in mind, we can now 

consider the psychological arrow of time. 

 

4. PSYCHOLOGICAL ARROW OF TIME AND THE 

MAXIMAL ENTROPY PRINCIPLE 
 

The psychological arrow of time refers to the 

phenomenon that humans view the past as different 

from the future.  For example, we can remember the 

past, but not the future.  It is possible to change the 

future but not the past.  That perception is so deeply 

ingrained in our interpretive mind, that our perception 

of cause and effect derives directly from it.  Most also 

believe in free will, and that we can make changes to 

the future.  But free will still prohibits revision of the 

past.  However, no matter whether one believes in free 

will or not, in any interpretation which distinguishes 

the past from the future, the assumption of 

consciousness or free-will is not necessary. It is rather 

the function of memory that is the key element that 

creates the asymmetric view of time, because for any 

automaton to effect change on the future based on its 

experience from the past, memory is required to create 

that causal link. 

 

4.1Memory and Logical Irreversibility 

Let us first examine a common explanation of 

the psychological arrow of time: for memory to retain 

information, heat dissipation is required and the total 

entropy increases for the combined memory and 

environment.  As a result, memory function has to be in 

the direction of entropy increase, and that must be the 

same as the thermodynamics arrow of time.  This is 

why the psychological and thermodynamic arrows 

point in the same direction. 
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However, as we have seen, there is no 

universal thermodynamic arrow of time, this 

explanation must be incorrect.  If time goes in the 

reverse direction, life will also see entropy increase for 

any system starting from a low entropy state.  The 

second law applies equally well in that opposite 

direction as we discussed.  Life may require entropy 

increases, but that does not explain why memory must 

go in a specific time direction.  If entropy increase is the 

only distinguishing feature, it is actually perfectly 

conceivable for one type of life form to remember the 

past and impact the future, while another type to 

remember the future and impact the past.  Both will see 

entropy increases. 

To answer why memory is asymmetric, one 

should go back to its basic function.  It is a mechanism 

for recording information, which means a system that 

can hold variable macroscopic states, as a result of its 

interaction with its environment.  The variable 

macroscopic state will be a quasi-deterministic 

function of another macroscopic variable from the 

environment, which we will call “input” from now on.   

Rolf Landauer [9] first pointed out that memory 

operation is logically irreversible.  Taking a memory 

system with the minimum information content as an 

example, something that can switch between a state of 

0 and another state of 1, its logical operation must be 

irreversible.  Before a recording operation, its state 

could be either in 0 or 1.  But after it records a bit of 

information from its environment, say 1, then its state 

is definite. As 1.However, if we look at the device in 

reverse, starting from a definitive state of 1, its proper 

operation cannot lead to a bifurcated state with either 

0 or 1 as a possibility.  Therefore, memory, by 

definition, cannot be a reversible device.  The two sides 

of a recording operation of the memory thus have to be 

different.  In essence, general purpose memory can 

only remember one side of time (the past) but not the 

other side (the future), because that is its purpose and 

function.4  No matter what its prior state is, after a 

recording operation (boundary condition change), it 

will record a definitive state given by its environment. 

 

4.2An Entropic Model of Memory 

                                                           
4  This obviously excludes non-general purpose memories 
such as quantum coupling which can “remember” the state of a 
specific coupled particle.  However, the fully coupled particle is not 
the mechanism for memories of life or a general purpose memory cell 
under current technological conditions. 

 

We note the thermodynamic irreversibility 

discussed in Section 3 is exactly the mechanism needed 

to provide the logical irreversibility needed for 

memory.  There are many possible physical 

mechanisms for a memory cell, however, all entropic 

memory systems essentially work in the same way, 

which can be described as follows: 

Definition 2: Memory 

Memory is a system with the following 

properties: 

(a) The entropy label 𝐿 variable stores a piece of 

information, with different values of 𝐿 

corresponding to different possible values for that 

information 

(b) Under different sets of boundary conditions {𝐵𝑗 }𝑖 , a 

different value for the entropic label 𝐿𝑖  will have 

the maximal entropy; the probability  of the system 

failing to be in the maximal entropic state is below 

a minimal threshold 1− 𝑝 𝐿 = 𝐿𝑖 {𝐵𝑗 }𝑖
< 𝜀 

As a result, a different external condition sets a 

different value of the entropic label.  This provides the 

function of memory to record external information 

from its input.  Note, however, that the operation of the 

memory (setting the cell’s state from external input) 

does not depend on a specific dynamic process, nor is it 

a function of time.  Rather, the operation relies on 

probabilistic inference, of the maximal entropy kind.   

Logical irreversibility is achieved through the 

entropic irreversibility of the memory system.  

Consider the scenario below: at time 𝑡 ≤ 0, the memory 

and its boundary conditions could be in any state.  

Without any loss of generality, we assume it has a value 

of 0.  At time 𝑡 = 0, the input changes to value 1.  As the 

boundary condition for the memory system has 

changed, the maximal entropy state of the memory 

becomes 1.  However, we know that right at 𝑡 = 0+, the 

state of the memory is still 0.  It only switches to 1 if a 

sufficient time delay ∆𝑡 has elapsed for the new 

maximal entropy state to materialize.  Furthermore, 

whether the memory was in a state of 1 or 0 at time 

𝑡 ≤ 0, at 𝑡 ≥ ∆𝑡, the memory state must be at 1 with a 

sufficiently large probability.  Hence, logical 

irreversibility is achieved.  This logical irreversibility 

actually has time reversal symmetry.  If one draws the 

time arrow in the below diagram from right to left, the 

same mechanism holds exactly in reverse and the 

memory will remember the future, instead of the past. 
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Fig -3: Model of Memory 

 

Thus far, we have not resorted to any specific 
physical mechanism that accomplishes this time-
reversible logical irreversibility.  The reason is that a 
macroscopic model of any specific physical mechanism 
is in reality only an idealized approximation of the 
much more complex underlying microscopic dynamic 
processes.  Such a deterministic model actually hides 
the fundamental statistical entropic inferential nature 
of the process.  Specifically, such macroscopic 
deterministic models are usually time-asymmetric 
which contradicts their underlying time-symmetric 
microscopic physics.  This is often not fully understood 
or realized by its users. 

For example, let us consider a one-bit 

computer memory cell.  If one ignores the details of its 

positive feedback loop and access mechanisms, the 

memory cell essentially relies on a capacitor to store a 

binary state of high voltage (1) or low voltage (0). 

The traditional way of looking at capacitor 

memory is described by the equation:  

𝑉 𝑡 = 𝑉1  1− 𝑒
−𝑡

𝜏    (1) 

where𝜏 = 𝑅𝐶 and the capacitor can record the 

fact that voltage changed to 𝑉1, However, this 

deterministic model runs into a problem upon closer 

examination.  Assume the input and the memory were 

both at 0 for time 𝑡 ≤ 0.  At time 𝑡 = 0, the environment 

flips to 1, and subsequently, the memory also migrates 

to 1 under equation (1).  This makes perfect sense in 

the forward time direction, as the capacitor responds to 

the input.  However, looking at it from the reverse time 

direction, we see that while the input voltage is steady 

at 1, the memory spontaneously decays from 1 to 0.  

That does not occur in reality.  Therefore, the 

deterministic macroscopic equation is actually 

notreversible, even though the underlying physics at 

the particle level is time reversible.  Therefore, this 

macroscopic model is indeed only approximate. 

 
Fig -4: Capacitor Memory 

 

What allows irreversibility to take hold is the 

vast difference in the probabilities of the capacitor to 

conform to external voltage vs. the capacitor going in 

the opposite direction.  This statistical irreversibility is 

actually what allows the capacitor to retain the logical 

irreversibility needed for its memory function. 

This situation is exactly analogous to another 

way to express the second law of thermodynamics: that 

heat only flows from higher temperature to lower 

temperature.  For example, bringing a heatsink next to 

a body will cause the body temperature to conform to 

the heatsink, and the temperature difference will 

decrease rather than increase.  This statement is 

actually time-irreversible, because looking back in 

time, heat appears to flow from low temperature to 

high temperature, and it does not happen.  Therefore, 

the macroscopic statement is time-irreversible while 

the underlying mechanical collisions of particles are 

time-symmetric.  What we are missing in the 

deterministic macroscopic statement of direction of 

heat flow, is that heat flow is a statistical phenomenon, 

too.  The heat conduction equation:  

𝑞 = −𝑘∇𝑇    (2) 

is similarly, only approximate. 

The key ingredient for both the capacitor 

memory and the heat flow to retain macroscopic 

irreversibility, while the underlying microscopic physic 

is reversible, is the fact that, the degrees of freedom 

caused by boundary conditions changes are 

tremendously more than the degrees of freedom of the 

system being examined.  In the case of the capacitor 

memory, it is simply assumed that there is an infinite 

degree of freedom from the external voltage source.  

But in reality the interaction of the capacitor with the 

voltage source actually causes dissipation and loss in 

the source (including lowering the input’s voltage), 

which is not accounted for in that equation.  The 
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mechanism of voltage source is similar to that of the 

heat sink, in providing many more degrees of freedom 

to cause the system to acquire a specific macroscopic 

state.  Electrostatics and thermodynamics just 

simplifies away the statistical reasoning by assuming 

infinite degrees of freedom from the external inputs, 

which allows them to describe the system 

deterministically as a result.In fact, the heat-conducting 

body can be construed to be a memory cell itself as 

well. 

Any system that keeps information as a 

macroscopic state variable will always consist of many 

potential microscopic states; it is statistical 

irreversibility, not time irreversibility that creates 

logical irreversibility. Therefore, information 

replication is only achieved on a statistical basis, not 

exactly.  

 

4.3Landauer Limit 

We can now calculate the entropic implication 

of memory operations.  Within the system itself, the 

switching of the boundary condition causes the 

maximal entropic state to switch.  If the external 

condition has equal probability between an 0 or 1, the 

entropy of either a 0 or 1 state for the memory is the 

same: 

Given 𝑝 𝐵 = 0 = 𝑝 𝐵 = 1 , we have  

𝑆0 = − 𝑝𝑖 𝑙𝑛𝑝𝑖𝑖∈𝑈0
= 𝑆1 = − 𝑝𝑖 𝑙𝑛𝑝𝑖𝑖∈𝑈1

 (3) 

But, if there is a definitive external state 𝐵 = 𝑗, 

the maximal entropy state of the memory changes to be 

the same as the input state, which implies: 

− 𝑝𝑖 𝑙𝑛𝑝𝑖  𝐵=𝑗  𝑖∈𝑈𝑗
≫ − 𝑝𝑖 𝑙𝑛𝑝𝑖  𝐵≠𝑗  𝑖∈𝑈𝑗

 (4) 

The logically irreversible memory operation 

essentially converts from an indefinite state to a 

definite state, where the memory’s probability 

distribution becomes sharply focused.  Before the 

recording operation, the memory can be in either a 0 or 

1 state.  After a recording operation, the system is a 

definitive state, say 1.  Assuming the Liouville’s 

theorem, the post recording state of system plus 

environment occupies the same volume as before the 

recording in phase space.  Since the phase space 

volume for the system has shrunk by 50% to 

correspond to a reduction of an indefinite state (both 0 

and 1) to a definite state (either a 0 or 1), the phase 

space volume of the environment must have increased 

by 100%.   

Using the Boltzmann entropy expression with 

no mixing, the phase space dimensions of the combined 

system and environment can be separated: 

𝑆𝐴 = 𝑘𝑙𝑛𝑊 = 𝑘𝑙𝑛（𝑊𝑆𝑊𝐸） = 𝑘𝑙𝑛𝑊𝑆 + 𝑘𝑙𝑛𝑊𝐸

 (5) 

where the subscript 𝑆 denotes the system (memory) 

and the subscript 𝐸 denotes the environment 

(input/boundary).  In a switch from an indefinite state 

of 0 and 1 to a definitive state of 1, ∆𝑆𝐴 ≥ 0, because of 

the Second Law of Thermodynamics. The first term 

𝑘𝑙𝑜𝑔𝑊𝑆  changes by -𝑘𝑙𝑛2 because of the 50% 

shrinkage, therefore the environment entropy 

𝑘𝑙𝑜𝑔𝑊𝐸must increase by at least 𝑘𝑙𝑛2.  With 𝑑𝑄 = 𝑇𝑑𝑆, 

we get 𝑑𝑄𝐸 ≥ 𝑘𝑇𝑙𝑛2.  The Landauer’s bound on the 

minimum heat dissipation for a memory function is 

thus obtained very simply.  This gives a quantitative 

measure of the entropy, or the degrees of freedom the 

environment is required to provide for the memory to 

operate.  QED. 

 

5. CONCLUSIONS 

 

In this paper, we have provided an explanation 

of how time reversible physics can be compatible with 

the perception that there is an arrow of time.  We have 

formulated generic definitions of entropy and memory.  

In doing so, we see that entropy is an epistemic 

variable, that the thermodynamic arrow of time is only 

relative to an observer who perceives/sets the initial 

condition of the system with incomplete information.  

There is no universal thermodynamic arrow.  We also 

see that memory by its nature is irreversible entropy 

and can derive from time reversible physics.  The 

psychological arrow of time is a maximal entropic 

statistical phenomenon that comes from changing 

boundary conditions.  We did not discuss the 

cosmological arrow and why the universe was in such a 

low entropy state at the big bang.  However, this might 

be a consequence of a change of boundary condition as 

well. 

We do not argue that all physical laws have to 

be time reversible, but rather that reversible physical 

laws can explain entropy increases perfectly well.   
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