Study on design and modification of bend test apparatus

Kaustubh Mavale¹, Deepali Kangane², Vikas Jat³, Gaurav Bhor⁴, Amreeta Kaigude⁵

^{1,2,3,4}(Department of Mechanical Engineering, Dr. D. Y. Patil, Institute of Technology, Pimpri,Pune-18) ⁵Professor(Department of Mechanical Engineering, Dr. D. Y. Patil, Institute of Technology, Pimpri, Pune-18)

Abstract: In this study we have designed and carried out the modification of bend test apparatus. A bend test is used to determine whether a specific piece of metal in question will break or fracture under pressure. Various couplings and fittings are tested here. The current system of bend test uses an unbalanced weight loading which gives rise to less number of points of contact. In this study we design and modify this setup, so that the load application process is balanced and there is increase in number of points of contact. Thus this will lead to optimisation in testing time and man power. Different magnitudes of load are applied on the samples to accurately determine not only the quality of the part, but also the root cause of a variety of defects and it will also helps us to determine its bending strength. In this we are going to study two designs i.e. plate arrangement and screw jack and lever arrangement further optimization of the efficient arrangement will be carried out.

Keywords: Bend Test, Screw Jack, Lever, Flat Belt.

1. INTRODUCTION

A bend test is used to determine whether a specific piece of metal in question will break or fracture under pressure. This is important in any project using metal otherwise the item being made could collapse from the immense pressure exerted on it. The bend test essentially measures a metal's ductility. Bend tests deform the test material at the midpoint causing a concave surface or a bend to form without the occurrence of fracture and are typically performed to determine the ductility or resistance to fracture of that material. The Project is concerned with the design and modification of bend test apparatus. Various couplings and fittings are tested over here. Our task is to modify the 'Bend' test setup. The basic aim of the bend test is to check the strength of the samples when it will go through practical application. Currently the setup used in the industry uses a weight loading system which is quiet unbalanced due to use of local equipments, which also leads to less number of point of contacts. So basically, we are going to balance this system by

replacing it with a modified and newly designed setup. Also, this new design will help us to increase the number of point of contacts. We have proposed two methodologies to counter this problem.

2. LITERATURE REVIEW

Chetan S.Dhamak, D.S.Bajaj, V.S.Aher [1]

Manoj R Patil1* and S D Kachave [2]

Every engineering product involve cost effective manufacturing and its versatility in application maintaining its aesthetics as well as assign service life without failure keeping those parameters in mind they focused their intention on designing and analyzing the jack model for actual service loads for varying models of automobile L.M.V. sectors. Automobile sectors are very keen at their productivity and customer satisfaction. They also keen at reducing the weight of scissor jack at the same time maintaining its strength and service life. They made certain change in manufacturing process thereby made a new versatile jack that can be used for varying models of L.M.V automobile sector. Also the new design that made by Pro-e software can be tested by ANSYS software.

According to the study carried out in IIT Kharagpur [3] they came across this following information: correction factor for speed and angle of wrap are used to modify the belt maximum stress. This correction is required because stress value is given for a specified drive speed and angle of wrap of 180^o. Therefore, when a drive has different speed than the specified and angle of wrap is also different from 180^o, then above mentioned corrections are required. The recommendations are; the centre distance should be greater than twice the sum of pulley diameters and the belt speed range should be within 15-25 m/s.

3. PROBLEM STATEMENT

Currently the setup used in the industry uses a weight loading system which is quiet unbalanced due to use of local equipments, which also leads to less number of point of contacts. So basically, we are going to balance

International Journal of Innovative Studies in Sciences and Engineering Technology (IJISSET)

ISSN 2455-4863 (Online)

www.ijisset.org

Volume: 4 Issue: 4 | April 2018

this system by replacing it with a modified and newly designed setup. Also, this new design will help us to increase the number of point of contacts.

Figure 1: Actual Bend set-up

Figure 2: Actual Bend set-up

4. METHODOLOGY

4.1 Plate Design

5. DESIGN AND CALCULATIONS

In design method, firstly we understood the problem statement and then we found various solutions to overcome the problem.

-1

Plate no	Weights	
	Lbs	Kg
1	16.81	15
2	2.27	5
3	4.54	10
4	2.27	5
5	6.81	15
6	4.54	10
7	6.81	15

 Table 2: Weight layout for set-2

Plate no	Weights	
	Lbs	Kgs
1	2.27	5
2	27.22	60
3	9.08	20
4	13.61	30
5	4.54	10
6	18.14	40

Set 1:-

Keeping height =0.02m, breadth = 0.144 m Density ($_{\varrho}$) =7870 kg/m³

International Journal of Innovative Studies in Sciences and Engineering Technology (IJISSET)

ISSN 2455-4863 (Online)

www.ijisset.org

Volume: 4 Issue: 4 | April 2018

For 15lbs (M=6.81kg)

Without considering holes:-

Density $(\varrho) = mass (M) / volume (v)$

Volume = 8.65*10-4 m³

Volume = l*b*h

l = 0.3 m

Considering 4 holes:-

m=6.574 kg

Difference between mass without hole (M) and with hole (m) - $% \left({{\left({M_{{\rm{B}}} \right)} \right)} \right)$

M-m = 6.81-6.5474 = 0.236 kg

Density ($_{\varrho}$) = mass/volume

7870 = (6.81+0.236)/ (volume)

Volume = 8.9529*10⁻⁴ m³

l*b*h = 8.9529*10-4

 $l*0.144*0.02 = 8.9529*10^{-4}$

l= 310.5 mm = 0.3105m

Similarly, the remaining plates for set 1 are designed as above.

For set 2-

Keeping height (h) = 0.04m and breadth (b) =0.190m as constant

Density ($_{\varrho}$) =7870 kg/m³

*For plate no 8- 5lbs plate we are going to use hanging weight

Similar method is used as in set 1, to find the remaining lengths.

 Table 3: Results for set-1

Plate no	Mass (lbs)	Length(m)
1	15	0.3105
2	5	0.11
3	10	0.2105
4	5	0.11
5	15	0.3105
6	10	0.2105
7	15	0.3105

Table 4: Results for set-2

Mass(lbs)	Length(m)
5	-
60	0.462
20	0.1585
30	0.234134
10	0.1518
40	0.31013
	Mass(lbs) 5 60 20 30 10 40

Figure 3: All views of assembly

Figure 3: Set two- 6 plates

Figure 5: Set one- 7 plates

Figure 6: Cut section

International Journal of Innovative Studies in Sciences and Engineering Technology

ISSN 2455-4863 (Online)	(IJISSET) <u>www.ijisset.org</u>	Volume: 4 Issue: 4 April 2018
6. DESIGN OF FLAT BELT		6. Coefficient due to reduction in force
For coupling 3 to 4 inch		due to inconvenience:-
• Standard width = 50mm		P= 0.9*1*200
• 3 PLY		= 180N
• Maximum belt speed = 10m/s	• D	Design of Screw (PCS) :-
 Minimum pulley diameter = 90mm 	S	$S_{yt} = S_{yc} = 400 \text{ N/mm}^2$
Belt length :-	7	Γaking FOS as 5
$L= 2C+ (\pi/2)^{*}(D+d) + ((D-d)^{2})/(4^{*}C)$		Compressive Stress = S_{yc}/FOS
Where, C= Centre distance = 510mm		= 400/5
D= Outer race diameter = 90mm		= 80 MPa
D= Inner race diameter = 85mm		Compressive Stress
L= 1294.90mm		is 4W/ (π*d _c ²)
• For belt tension: Belt of 3 plies- 1.5% per m length shorter Steady load	of 15mm and load	Where dc = core diameter of screw 80 = $4*2500/(\pi^* d_c^2)$
correction factor is 1.2 Arc of contact	factor	d _c = 6.307mm
= 180-{(D-d)/C}*60		taking standard value,
= 179.41degrees.		$d_c = 8mm$
For coupling of 1 to 2 inch	the other	Therefore, for square threads Nominal diameter= 22mm. Pitch= 5mm
specifications are same as above	the other	d = 24m
7. DESIGN OF SCREW JACK		n = 5mm
• Problem specifications :-	dc = d-n =	25 = 19mm
It is required to design a screw	jack for $d_m = d - 0.5$	5n = 24 - 2.5 = 21.5 mm
applying pulling force on a coupling	through a	single start threads
lever.	l=n=5mm	, single start an eaus,
1. Load carrying capacity = 2.5 F	$tan(\alpha) = 1$	/ (π* d)
2. Lifting height = $0.2m$	$\alpha = 4$	23 degrees
3. Components of screw p materials used :-	ack and u = 4. Taking μ =	$= \tan(\phi) = 0.18$
Sr. No Name of Materia	l d	= 10.20 degrees.
component 1 Screw Steel 30) <u>C8</u> As φ>α, s	crew is self locking
2 Nut Phosph	or Bronze $\mu T = \{W^*\}$	d_m *tan ($\phi + \alpha$)}/2
Grade1 3 Handle Steel 30)C8 = 691	5.32 Nmm
4 Cup Grey G FG200	Cast Iron $\tau = (16^* \mu$	T)/ $(\pi^* d_c^3)$
4. Maximum hand force appl	ied is of $\tau = 5.13$ M	N/mm ²
200N.	Compress	sive stress = 4W/ ($\pi^* d_c^2$)

Page 11

= 8.817 N/mm²

International Journal of Innovative Studies in Sciences and Engineering Technology

ISSN 2455-4863 (Online)	(IJISSET) www.ijisset.org	Volume: 4 Issue: 4 April 2018
Bending moment (M _B),	FOS for bucklir	ng :-
$M_B = P^* l_h M_B = 48600 Nmm$	$FOS = P_{CR}/V$	V
Bending stress = $(32^* M_B)/(\pi^* d_c^3)$	= 20.91	L
= 72.17 N/mm ²	Therefore, the de	sign is safe against buckling.
Principal shear stress(Z _{max}) :-	• Design o	of nut
$Z_{max} = sqrt\{(bending stress/2)2 + \tau^2\}$	The permissible l	bearing press between the steel screw
= 36.44 N/mm ²	and bronze is 10M	V/mm ²
Factor of safety(FOS) :-	The number of th	reads required to support the load is z
FOS = $\{S_{sy}/Z_{max}\}$	$Z = (4W) / \pi^* S_b^* (a)$	$d^2-d^2_c$)
$= \{0.5*S_{yt}/Z_{max}\}$	Z = 1.4805(appro	x) = 2
FOS = 5.48	Axial length of th	e nut (H)
As our assumed FOS is less than actual F	H = $Z^*p = 2^*5 = 1$ FOS	0mm
Therefore, our design is safe.	The transverse shear stress at the root of the threads it	
Buckling considerations :-	$\frac{1}{7} = \frac{1}{4} $)
During the raising of load through a distand	$\sum_{n = W} (1 U Z t)$ ce of Horo t = 3)
200mm, the portion of screw between the and handle acts as a column	$r_{1} = 1000 \text{ mm}$	2
Length of column(Le) = $200+50 = 250$ mm	$E_n = 5.520 \text{ K/mm}$	2
Polar Moment of Inertia(I) = $(\pi^*d 4)/64$	FOS = 17.4	
$L = 6207.1171 \text{ mm}^4$	The outer diamet	er of the nut is assumed to be twice of
I = 0.59/.11/1 IIIII.	the nominal diam	eter of the thread
Area(A) = $(\pi^{-}\alpha_{c}^{2})/4$	• Design o	of cup
$A = 283.52 \text{ mm}^2$	The annular are	ea of the collar friction has outer
K = sqrt(1/A)	diameter of 1.6d	and the inner diameter is assumed to
K = 4.75 mm	De 0.00	-29.4mm
Slenderness ratio of screw	$D0 = 1.00 = 1.0^{\circ} 24 = 19.2$ Di = 0.8*24 = 19.2	2mm
$= (L_C/K)_{actual} = 250/4.75$	The collar frictior	n torque
= 52.63	$(Mt)_{c}=(\mu_{c}*W/4)*($	(D _o +D _i)
Since one end of the screw is fixed in the nut and other end is free the end fixity coefficient is 0.25	the $(M_t)_c = 7200 \text{ Nm}$	m
border line between short and long column is g	iven The total torque	(Mt) t required to raise the load is
by:-	given by	
$\{S_{yt}/2\} = (n^*\pi^{2*}E)/(L_C/K)^2_{critical}$	$(Mt)t = (Mt)_{c} + (Mt)_{c}$	$(t_t)_t$
$(L_C / K)_{critical} = 50.53$	(Mt) t= 14115.32	Nmm
As $(L_C/K)_{actual}$ is greater than $(L_C/K)_{critical}$	Length of	f the handle(L _h)
Hence the screw should be treated as long column	and .The external tor	que which is exerted by the worker is

 $(M_t)_t = 0.9*1*200*L_h$ L_h=78.41 mm

Hence the screw should be treated as long column and by using Euler's Equation:given by

 $P_{CR} = (n^* \pi^{2*} E^* A) / (L_C / K)^2_{actual}$ P_{CR} = 52278.97 N

Page 12

© 2018, IJISSET

International Journal of Innovative Studies in Sciences and Engineering Technology

ISSN 2455-4863 (Online)	(IJISSET) www.ijisset.org	Volume: 4 Issue: 4 April 2018
• Design of bearing	D = 70mm	
The procedure for the selection of ball bearing manufacturer's catalogue	from $H = 14mm$ $D_1 = 52mm$	1
By selecting single deep groove ball bearing The hand is rotated manually, it is thus not possible, to find o	andle 8. CONC d out	LUSION
the speed accurately. For the purpose of be selection, it is assumed that the handle rotat 10rpm	aring In this pa es at 'plate arr arrangeme	per we have studied above two methods- rangement' and 'screw jack and lever ent'. So we have come to a conclusion that the
Life of bearing in million revolutions is L = 2.4 million revolutions	given plate arran cycle time the ease o	ngement method is the efficient in terms of as well as economical consideration due to f operation increase in number of point of
Also,	contacts, c	compact setup and cost. The screw jack and
P = W = 2500N	lever arra complexity	angement is not cost efficient and has vin setup.
C= dynamic load capacity	REFEREN	ICES
$C = P^* L^{1/3}$	[1] Chota	un S Dhamak D S Bajai V S Abor "DESICN
C = 3347.16 N	AND	OPTIMIZATION OF SCISSOR JACK",
It is assumed that bore diameter of the bearing mm	is 50 Intern and M	national Journal of Advances in Production Aechanical Engineering (Ijapme), 2016
Designation of the bearing =51110	[2] Mano	j R Patil and S D Kachave "DESIGN AND
Bearing no 51110 with dynamic load capacity of 2 N is selected for jack	5500 ANAL Rob. 1	YSIS OF SCISSOR JACK", 'Int. J. Mech. Eng. & Res. ', 2015
The dimensions of the bearing are as follows	[3] "DESI	IGN OF FLAT BELT DRIVES", IIT Kharagpur.
	[4] "DESI	GN OF MACHINE ELEMENTS", V.B.Bhandari.

d =50 mm