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Abstract: Fuzzy metric space is first defined by 

Kramosil and Michalek in 1975. Many authors modified 
Fuzzy metric space and proved fixed point results in 
Fuzzy metric space. Singh B. and Chauhan were first 
introduced the concept of compatible mappings of Fuzzy 
metric space and proved the common fixed point 
theorem in 2000.Cho et were introduced the concept of 
compatible mapping of type (P). In this paper, we 
obtain a  f ixed point  in  fuzzy  metric  space .Our  
purpose is  general ize  the several  known 
results .   
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1. INTRODUCTION 

Rhoades (1985) proved for pair of mappings which in 
turn was generalized by Kang and Rhoades (1996) 
using compatible condition defined by Jungck (1986). 
Branciari (2002) obtained a fixed point result for a 
single mapping satisfying an analogue of Banach’s 
contraction principle for an intregral-type inequality. 
The second auther (Rhoades, 2003) prove Two fixed 
point theorems involving more general contractive 
conditions. 

2. PRELIMINARIES 

tisfies    Consider   ={ : : +  } such that  

  is nonnegative, Lebesgue integrable, and sa 

 

Let  : +  + satisfy  that   

 (i)   is nonnegative and nondecreasing on  + ,  

(ii)  (t)<t  for each t>0, 

(iii) 


1n
 n(t)<   for each fixed t>0.  where  

 ={ :  satisfies  (i)-(iii)}. 

3. MATERIAL AND METHODS 

Theorem (3.1):Let A, B, S and T be the mappings from a 

fuzzy  metric space (X,M,*) into itself satisfying the 

following conditions: 

(i) S and T are surjective 

(ii)  One of A, B, S and T is continuous 

(iii)   A, S and B, T are compatible pairs of type (P) 

 ( iv)  
z)By,M(Ax,

0
 (t)dt     ( 

),,(

0

zyxm

 (t)dt  (3.1)  

Where k   ,],1,0[ ,and  

m(x ,y ,z)=max{M(Sx,Ty,z) ,M(Sx,Ax ,z) ,M(Ty,By

,z) ,  

)},,(),,,(max{

),,().,,(),,,().,,(),,,().,,(),,,().,,(max{

zAxTyMzBySxM

zAxTyMzByTyMzBySxMzAxSxMzAxTyMzTySxMzBySxMzTySxM

}                 (3.2)  

 when m(x,y,z)=1 if Sx=By and Ty=Ax.Then A,B,S and T 

have a unique common fixed point in X. 

4. RESULTS AND DISCUSSION 

 Proof of theorem: If A,B,S and T be the mappings from 

a fuzzy metric space (X,M,*)into itself then there exists 

a sequence  {xn} X with x0X, 

Ax 2 n = Tx 2 n + 1  = x 2 n + 1    and   Bx 2 n + 1 = Sx 2 n + 2  

=x 2 n + 2  

Now assume x2n x2n+1 for each n. With x=x2n,y= 

x2n+1,then from (3.1) we have    


 z),Bx,M(Ax

0

12n2n

 (t)dt  ( 
 ),,(

0

122 zxxM nn

 (t)dt  

 
 z),x,M(x

0

22n12n

 (t)dt  ( 
 ),,(

0

122 zxxM nn

 (t)dt  

                        (3 .3)  

Continuing this process, we have 


 z),Bx,M(Ax

0

12n2n

 (t)dt     ( 
 ),,(

0

122 zxxM nn

 (t)dt    

… .  2 n (M)                                    (3 .4)  

where M= 
),,(

0

10 zxxM

 (t)dt . Then it is easily shown that 

{xn} is Cauchy, hence convergent. Call the limit p. 

Consequently the subsequences{Ax2n},{Bx2n+1}, {Sx2n}, 

{Tx2n+1} converge to p .  

Let  p=Sp=Ap .Then m(p,p ,z)= max 

{M(Sp,Tp,z) ,M(Sp,Ap,z) ,M(Tp,Bp,z) ,  
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)},,(),,,(max{

),,().,,(),,,().,,(),,,().,,(),,,().,,(max{

zApTpMzBpSpM

zApTpMzBpTpMzBpSpMzApSpMzApTpMzTpSpMzBpSpMzTpSpM

}              

              (3.5)        

Therefore  m(p,p ,z)= max 

{M(p,Tp ,z) ,1 ,M(Tp,Bp,z) ,  

)},,(),,,(max{

),,().,,(),,,(.1),,,().,,(),,,().,,(max{

zpTpMzBppM

zpTpMzBpTpMzBppMzpTpMzTppMzBppMzTppM

}                          (3.6)  

Hence   M(p,Tp,z).M(p,Bp,z)=1   since 

M(Tp,Bp,z)M(Tp,p,z)*M(p,Bp,z) 

So p=Tp, p=Bp and (3.1) becomes 


z)Tp,M(p,

0
 (t)dt     ( 

),,(

0

zTppM

 (t)dt           (3 .7)  

 which, from (3.3), implies that p=Tp=Bp. 

Similarly, p=Tp=Bp implies that p=Sp=Ap. We will now 

show that A, B, S and T satisfy (3.5). 

m(x,Sx,z)=maxM(Sx,TSx,z),M(Sx,Ax,z),M(TSx,BSx,z) 

)},,(),,,(max{

),,().,,(),,,().,,(),,,().,,(),,,().,,(max{

zAxTSxMzBSxSxM

zAxTSxMzBSxTSxMzBSxSxMzAxSxMzAxTSxMzTSxSxMzBSxSxMzTSxSxM

 (3.8) .   

Now we have M(Sx,TSx,z)   M(Sx,Ax,z)*M(Ax,TSx,z) 

M(Sx,BSx,z)M(Sx,Ax,z)*M(Ax,BSx,z) 

M(BSx,TSx,z)   M(BSx,Bx,z)*M(Bx,TSx,z) 

on the considering above  we have  

dtt)(
z)TSx,M(Sx,

0      ( dtt
zTSxSxM

)(
),,(

0  a contradiction 

5. CONCLUSION 

Hence  S,A and T,B has a fixed point ,that any fixed 

point of S,A is also a fixed point of T,B and conversely. 

Thus S,A and T,B  have a common fixed point . Hence 

A,B,S and T  has a common fixed point. 

Suppose that T is continous. Since B and T are 

compatible, then TTx2n+1 =Tp and BBx2n+1=Tp. 

So that M(TTx2n+1, BBx2n+1, z)=1=M(SSx2n,AAx2n ,z)=1   

as n   
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