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Abstract: In this paper, the boundary value problem for 

the Sturm-Liouville equation with discontinuity 

conditions inside a finite interval is considered. The 

completeness theorem for eigenfunctions of this problem 

is proved. The spectral expansion formula with respect to 

eigenfunctions is obtained by using the contour integral 

method and Parseval equality is given. 
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1. INTRODUCTION 

In mathematical physics, geophysics, electromagnetic, 

elasticity and other branches of engineering and 

natural sciences, the boundary value problems for 

Sturm-Liouville equation with discontinuity inside an 

interval are often encountered [1-6]. Such problems are 

connected with discontinuous material properties (see 

[7] for details).   

Now, in this work, we consider the Sturm-Liouville 

equation 

'' ( ) , 0 ,y q x y y x        (1) 

with the boundary condition 

'(0) ( ) 0,y y      (2) 

and the discontinuity conditions  

1( 0) ( 0), '( 0) '( 0)y d ay d y d a y d           (3) 

where 2( ) (0, )q x L   is a real valued function, 

,
2

d



 

 
 

, a  is real number and 0 1a  ,   is a 

spectral parameter.  

In continuous case, i.e. 1,a  direct and inverse spectral 

problems of Sturm-Liouville operators are excessively 

examined, especially the books by V. A. Marchenko [8] 

and by B. M. Levitan and I. S. Sargsjan [9] may serve as 

a good introduction to the theory of Sturm-Liouville 

operators. In the recent years, the Sturm-Liouville 

problems which has discontinuities in the solution or 

its derivative at interior point has been widely studied 

at different aspects [7, 10-17]. The aim of this work is 

the prove that the system of the eigenfunctions of the 

Sturm-Liouville boundary value problem with 

discontinuity (1)-(3) is complete and forms an 

orthogonal basis in 2(0, )L  . This paper is organized as 

follows: in section 2, we give some spectral properties 

of the problem (1)-(3) for preliminaries. Namely, the 

asymptotic formulas of the eigenvalues, eigenfunctions 

and normalizing numbers of the boundary value 

problem (1)-(3) are given. In section 3, we prove the 

completeness theorem of the problem (1)-(3) and 

obtain the spectral expansion formula with respect to 

the eigenfunctions of this problem. Note that the 

completeness and expansion theorems are important 

for solving various problems in mathematical physics 

by the Fourier method.  

2. PRELIMINARIES 

Let ( , ) x  and  ,x   be solution of equation (1) 

satisfying the following initial conditions 

   

(0, ) 1, '(0, ) 0

, 0, ' , 1

   

     

 

 
 

and the discontinuity condition (3). Let 2k  . The 

integral representation of solution  ( , ) x  has the 

form ([10]) 

0

0

( , ) ( , ) ( , )cos ,    
x

x x k K x t ktdt  (4) 

where 

0

cos , 0 ,
( , )

cos cos (2 ), ,


 

 
 

   

kx x d
x k

a kx a k d x d x
 

here, 
1 1

2
a a

a
  
  

 
, the kernel  

     , , ,K x t K x t K x t    

and  

   1 ( )

1

0

, 1, ( ) ( )
x x

c x

x

K x t dt e x x t q t dt 


     . 
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The integral representation (4) is not a transformation 

operator. Moreover, differently from the 

transformation operator, the kernel function of this 

representation has a discontinuity along the line 

2 , .t d x x d     

The characteristic function of the boundary value 

problem (1)-(3) is 

             , , , , ' , ' , , ,x x x x x x               

and    , , ,x x     is not depend on .x  Substituting 

0x   and x  in this relation 

   , '(0, )          . 

The zeros n of characteristic function coincide with 

the eigenvalues of the boundary value problem (1)-(3). 

The function  , nx   and  , nx   are eigenfunctions 

and there exists a sequence n  such that   

   , , , 0.n n n nx x                   (5) 

The eigenvalues of the problem (1)-(3) are simple and  

 n n n     ,    (6) 

holds, where  

 2

0

: ,n nx dx


     

is the normalizing numbers of problem (1)-(3). 

Lemma 1. [10]  

i. The eigenvalues of problem (1-3) have the following 

asymptotic behavior  

0

0 0
,n n

n n n

n n

d
k k

k k


       (7) 

where nd  is a bounded sequence and    2n l . 

ii. Normalizing numbers of the problem (1)-(3) have the 

asymptotic behavior  

      0
2,n n n n l . 

In this lemma,  
2

0
nk  and  0

n  are eigenvalues and 

normalizing numbers respectively in case of   0q x   

in the equation (1).  

Lemma 2. The eigenfunctions of the boundary value 

problem have the form 

   
 

 0
0 0

, , , .n

n n n

n

x
x x k x C

k


            (8) 

Proof. Substituting the eigenvalues (7) into the 

expression (4), we get for ,x d  

 
 0

0
, cos ,n

n n

n

x
x k x

k


     

where  

   
 0 0

0
, sin cosn n

n n n

n

d x
x K x x k x k x

k




 
  

 
 

 
 

 0 0

0

0 0

' , sin ' , cos
x x

n n

n n

n

d
K x t k tdt K x t t k tdt

k


   . 

Similarly, for ,x d  we have 

   
 0 0

0
, cos cos 2 ,n

n n n

n

x
x a k x a k d x

k


        

where   

   
 0 0

0
, sin cosn n

n n n

n

d x
x K x x k x k x

k




 
  

 

 

   
 

   2 0 0 0
2 0 0

, sin 2 2 cos 2n nt d x
t d x n n

n

d
K x t k d x d x k d x

k


  

  

 
       

 

 

 
 

 0 0

0

0 0

' , sin ' , cos
x x

n n

n n

n

d
K x t k tdt K x t t k tdt

k


   . 

Consequently, using the relation (see [10])  

   
0

,
2

x
a

K x x q t dt


  , 

   2 0
2 0

0

,
2

x
t d x
t d x

a
K x t q t dt


  

  
  , 

  1n x c   and   2n x c  . Thus we obtain the formula 

(8). The lemma is proved.  

3. MAIN RESULTS 

The completeness and expansion theorems are 

important for solving various problems in 

mathematical physics by the Fourier method, and also 

for the spectral theory itself. In this section, we prove 

the completeness theorem of the eigenfunctions of the 

problem (1)-(3) and then obtain the expansion formula 

with respect to eigenfunctions of this problem. 

Theorem 3. The system of eigenfunctions   
0

, n n
x 


 

of the boundary value problem (1)-(3) is complete in 

2(0, ).L    
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Proof. Denote 

 
 

   
   

, , , ,1
, ,

, , , ,

x t x t
G x t

x t x t

   


   

 
  

 
    (9) 

and consider the function   

     
0

, , , .Y x G x t f t dt


        (10) 

The function  ,Y x   is the solution of the equation 

   

   

   

   1

'' ,

' 0 0,

0 0 ,

' 0 ' 0 .

Y q x Y Y f x

Y Y

Y d aY d

Y d a Y d







   

 

  

  

        (11) 

The function  , ,G x t   is called Green function of the 

problem (1)-(3). It is written from (9) and (10) that  

 
 

 
   

 

 
   

0

, ,
, , , .

x

x

x x
Y x t f t dt t f t dt

   
    

 
  

  

It follows from (5) and (6) that 

 
 

 , ,n

n n

n

x x


   



  . 

Using these expressions, we get  

       
0

1
Re , , ,

n
n n

n

sY x x t f t dt


 
    


  .   (12) 

Let 2( ) (0, )f x L   be such that  

     
0

, 0, 0.nf x f t t dt n


     

Then, it follows from (12) that  Re , 0.
n

sY x
 




  

Consequently, for each fixed  0,x  ,  ,Y x   is a 

entire function with respect to  . Moreover, in the 

equality (10), taking into account the inequality (see 

[10]) 

  Imk
C k e



    (13) 

which is valid in the domain   

 0: : , 0nG k k k n      

where   is sufficiently small positive number and the 

asymptotic formulas 

   Im
, , ,

k x
x O e k           (14) 

 
Im ( )

, ,
k x

e
x O k

k



 
 

   
 

         (15) 

it is obtained that for fixed 0   and sufficiently large 
* 0k  :  

  *, , , .
C

Y x k G k k
k


     

Using maximum principle and Liouville theorem, we 

find  , 0.Y x    It follows from here and (11) that 

  0f x   a.e. on  0, . The theorem is proved. 

 

Theorem 4. Let  f x  be absolutely continuous function, 

   0 0f d af d   ,    1' 0 ' 0f d a f d    and 

   ' 0 0f f   . Then, the expansion formula is valid: 

   
0

,n n
n

f x c x 




 ,  (16) 

where   

   
0

1
,n n

n

c f t t dt


 


   

and the series converges uniformly on  0, .  

Proof. Since  ,x   and  ,x   are the solution of 

the problem (1)-(3), we can write 

 
 

         
0

1
, , '' , ,

x

Y x x t q t t f t dt      
 


       


                    , '' , ,
x

x t q t t f t dt


     


     


 . 

Integrating of the terms containing second derivatives 

by parts, we get for x d  

 
 

      0

1
, , ' , x

tY x x t f t    
 


  


 

            
0

, ' , ' ,
x

x t f t q t t f t dt          

                0
0, ' , d

t x t dx t f t     

  
  
  

 

               , ' , ' ,
x

x t f t q t t f t dt


     


    


  

and for x d   
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       0
0 0

1
, , ' , d x

t t dY x x t f t    
 



  
   


 

           
0

, ' , ' ,
x

x t f t q t t f t dt          

               , ' , t xx t f t    


  

               , ' , ' ,
x

x t f t q t t f t dt


     


    


 . 

Thus, we obtain 

 
 

    1 2

1
, , ,

f x
Y x Z x Z x  

 
   , (17) 

where  

 
 

     

         

1

0

1
, , ' ,

, ' , , : ' ,

x

x

Z x x t g t dt

x t g t dt g t f t


    


   


 
 


 







 

      
 

       2

0

1
, , ,

x

Z x x q t t f t dt    



 
 

      

       , , .
x

x q t t f t dt


   


 


  

Using the expressions (13)-(15), for fixed 0   and 

sufficiently large * 0k  , we have  

  *2
2

0
max , , , .

x

C
Z x k G k k

k





 
    (18) 

Now, let us show that 

 1
0

lim max , 0.
k x
k G

Z x






  


   (19) 

Assume that  g x  is absolutely continuous on  0, .  

Then, integrating by parts, we find for x d  

 
 

     1 0

1
, , , x

tZ x x t g t    



 


 

      0
0, , d

t x t dx t g t     

  
   

                    
0

, , ' , , '
x

x

x t g t dt x t g t dt


       


  


   

and for x d   

 
 

       0
1 0 0

1
, , , d x

t t dZ x x t g t    




  
  


 

                      , , t xx t g t    


  

           
0

, , ' , , '
x

x

x t g t dt x t g t dt


       


  


  . 

Thus, for both cases, we can write   

 
 

       1

0

1
, , , '( ) , , '( ) .

x

x

Z x x t g t dt x t g t dt


        


   
  
   

   

Similarly, using the relations (13)-(15), we get 

  *1
1

0
max , , , .

x

C
Z x k G k k

k





 
    

In general case, fix 0   and choose absolutely 

continuous function  g t  such that 

   
0

.g t g t dt


    

Then, in the relation 

 
        1

0

1
( , ) , ' ,

x

Z x x g t g t t dt    



 
 


 

        , ' ,
x

x g t g t t dt


   


  


  

 
           

0

1
, , , , ,

x

x

x t g t dt x t g t dt


        


  
   

   
 

using the estimates (13)-(15), we calculate for ** 0k  ,  

,k G  **k k ,  

     
   

1
0

0

max ,
x

C C
Z x C g t g t dt C

k k






 
 

 
     . 

Thus, it follows from here that 

 1
0

limmax , .
k x
k G

Z x C




 

  


  

Since   is an arbitrary positive number, the relation 

(19) holds. Now, consider the following contour 

integral: 

   
1

, ,
2

N

N

G

I x t Y x d
i

 


  , 

where 0: : , 0,1,...
2

N NG k k N
 

   
 

 is a contour with the 

counter-clockwise circuit. It is obtained from the 

residue theorem that  
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0 0

, Re , ,
n

N N

N n n
n n

I x t sY x c x
 

  


 

   , (20) 

where 

   
0

1
,n n

n

c f t x dt


 


  . 

On the other hand, using the equality (17), we get 

     , ,N NI x t f x x    (21) 

where  

     1 2

1 1
, ,

2
N

N

G

x Z x Z x d
i

   
 

     

and from (18), (19)  

 
0

limmax 0N
N x

x



  
 . 

Consequently, using the expressions (20) and (21), as 

N  , the expansion formula (16) is obtained. The 

theorem is proved. 

Corollary 5. The system of eigenfunctions   
0

, n n
x 


 

is complete and orthogonal in  2 0,L  , therefore it 

forms an orthogonal basis in  2 0,L  . For 

   2 0,f x L  ,  the Parseval equality is valid: 

 
2 2

00

.n n
n

f t dt c
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