
International Journal of Innovative Studies in Sciences and Engineering Technology

(IJISSET)

ISSN 2455-4863 (Online) www.ijisset.org Volume: 3 Issue: 11 | November 2017

© 2017, IJISSET Page 27

A Grammar-based Methodology for Producing Mathematical

Expressions

Sahereh Hosseinpour 1, Mir Mohammad Reza Alavi Milani 2, Huseyin Pehlivan 3

1 Computer Engineering Department, Ataturk University, Erzurum, Turkey
2 Computer Engineering Department, Ataturk University, Erzurum, Turkey

3 Computer Engineering Department, Karadeniz Technical University, Trabzon, Turkey

Abstract: There are situations that one needs to write

various kinds of mathematic questions, such as

practicing tests, school exams, and function optimization

algorithms. Some systems may use a database of

mathematic equations where all expressions are written

once and then it is being used many times. Solutions or

answers of such questions might be stored, but it will not

be a dynamic system, and no variety in expressions.

There are various ways for random generation of

mathematic expressions. Depending on involving

operators and operands, variables, different types of

generators can be implemented. Unfortunately, it is not

possible to control those kinds of expressions that require

satisfying conditions; hence there are methods that can

control limited part of generating expressions. This

paper addresses a grammar based methodology to

automatically generate template-based mathematical

expressions such as first-degree and quadratic equation,

polynomials, and limits.

Keywords: Grammar-based method, Mathematical

Expression, random generation, dynamic template,

educational system

1. INTRODUCTION

Different systems have been developed for expression

generation using template in Natural Language

Generation (NLG). YAG [1] produces Template Based

strings in the form of real time and general-purpose.

D2S (Data-to-Speech) [2] has been developed for

different applications such as rout description, music,

soccer report, and also for different languages

including English. EXEMPLARS [3] is an object oriented,

rule-based framework which supports dynamic text

generator, and is a superset for JAVA, can be used

templates of HTML/SGML. XtraGen [4] is XML and

JAVA-based software system for NLG which can be

easily integrated with other applications.

Randomness is an interesting topic for scholars, since

past times. This study includes random number,

random graphs, and more recently random natural

languages generating. So, different methods have been

proposed for random numbers generation [5-8].

Random numbers have different applications in

different sciences such as cryptography [9-11],

Computer Simulation [12, 13], and even Animal

Sciences [14]. Because of random numbers generation

importance, different methods have been proposed to

produce random and pseudorandom numbers, such as

methods that using chaotic functions [15] or electronic

noises [16]. Also, Random generation is of great

interest in other fields including E.N.GILBERT [17]

studies which is concerns with random graphs and

related probabilities. Random production is considered

in Natural Language Processing (NLP), also, and

different systems have been developed under the title

of NLG, as measures taken by Langkilde [18], using

stochastic techniques for NLG. These systems are

divided into two categories real and Template Based.

Kees Van Deemter [19] has compared these categories.

Tillman Bechar [20] presented a generation method for

template-based NLG, using TAG. He proceeded on

random language generation through integrating Basic

Tree Nodes. Of course, template random generation is

not limited to string random generation. It has also

other applications; for example, Amruth N. Kumar [21]

used templates to produce problems and mainly

programs. Test case generation is another application

of random generation. Takahide Y. et.al [22] designed a

tool for Just-In-Time (JIT) compilers as runtime test.

The issue of random generation is also presented in

designing automatic tests. Various systems have been

generated to help teachers generate question files in

the internet [23-25]. In [26], Joao et.al generated a

system to produce automatic mathematical tests with

simple answers in which some structures have been

designed to generate tests. In [27], Ana Paula designed

a system for automatic generation of mathematics

exercises based on Constraining Logic Programming

(CLP). Such systems provide facilities for automatic

generation of tests in environments such as Internet

and virtual training systems.

One of the most important issues in designing

mathematical tests is automatic generation of

International Journal of Innovative Studies in Sciences and Engineering Technology

(IJISSET)

ISSN 2455-4863 (Online) www.ijisset.org Volume: 3 Issue: 11 | November 2017

© 2017, IJISSET Page 28

mathematical expressions (AGMEs). For this purpose,

we need to design templates which are appropriate

templates for questions. AGMEs will be examined in

this article. Moreover different generation methods of

mathematical expressions and random space (number

of generated expression) will also be examined in this

article. Using Extended BNF grammars, we can develop

a grammar for AMGEs. However, since we need to

generate expressions with special characteristics in

issues such as automatic tests, our work mainly focuses

on generating mathematical issues with special

characteristics and generating production templates.

Produce of expression in proposed method is not

completely random, and based on the subject can be

design templates that generate mathematical

expression with specific circumstances.

numerical and analytical are two main methods for

solving mathematical problems. There are

approximations for numerical solution of problems

and different methods have been proposed for them.

Analytical solving of problems in comparison with

numerical solution is complicated, so some of problem

haven’t analitycal solution. In this paper we present a

method to automatically generate expression which

have analytical solutions.

In this article, a Context-Free Grammar (CFG) is

suggested to prepare templates and develop classes of

object-oriented type to generate Mathematical

Expressions with underlying characteristics. In the

literature, CFG are generally used to verify the syntax of

given input data. On the contrary, this work uses CFGs

to produce input data itself. We will also give a brief

explanation of random expression, and then a grammar

is presented to generate General Mathematical

Expressions (GMEs). Generating random expressions

and discuses about domain of this problem are two

cases that presented in this article. Afterwards, we

proceed on Mathematical Expressions generation with

desired characteristics. Then we present a grammar

entitled "Template-Context Grammar", and then

examples of templates using this grammar will be

implemented for some Mathematical Expressions.

2. GENRATION METHODOLOGY FOR

MATHEMATICAL EXPRESSIONS

There are Simple and basic methods for randomly

generating mathematical expressions. Such as,

generating a mathematical expression involving

numbers as operand and these characters, +, - ,* as

operators which can be developed in Algorithm 1.

FormulaStr ← generate a random number

while True

Operator ← select a random operator from {'+' , ' -' , '*'}

Operand ← generate a random number

FormulaStr ← FormulaStr & Operator & |Operand|

Algorithm 1: Statement for generate a random basic

arithmetic expression

According to Algorithm 1 arithmetic expressions such

as "23+5*3-2+3+10" can be generated randomly.

Similar to the mentioned method in this algorithm, by

adding some modifications to this method, polynomial

expression can also be generated as in Algorithm 2.

polyExp ← ' '

n←a random number as length of polynomial

repeate for n times

CoeffN ←generate a random number

if CoeffN>0 : polyExp←polyExp & '+' & CoeffN & '* x'n

if CoeffN<0 : polyExp←polyExp & '-' & |CoeffN|& & '* x'n

decrease n by 1

Algorithm 2: Generating a random polynomial expression

Using statements of Algorithm 2, polynomials such as

3*x5-15*x3+8*x2+30 can be generated. Note that in this

example, an expression with the power of four has the

coefficient of zero. Of course, the method discussed in

this section is appropriate for generating Specific

Mathematical Expressions (SMEs) like polynomials.

Mathematical Expression, other than above mentioned

cases in this section, can be placed in parentheses or

have similar mathematical functions, division

operators, sin, cos etc. These issues make their

generation almost impossible by this method.

To generate mathematical functions in general, we

need a special structure, with recursive characteristic.

In [28], Todd V. proposed a structure for mathematical

expressions to transfer expressions as function

arguments. Moreover, mathematical expressions can be

displayed in the form of binary tree structure. This

structure known as Expression Tree has an inherent

tree-like structure. For example, Algorithm 3 indicates

tree-structure of

 .

Algorithm 3: Tree representing the expression

-

* 12

b

+

a

/

+ 2

y x

International Journal of Innovative Studies in Sciences and Engineering Technology

(IJISSET)

ISSN 2455-4863 (Online) www.ijisset.org Volume: 3 Issue: 11 | November 2017

© 2017, IJISSET Page 29

Binary tree-structure can be appropriate for

illustrating mathematical expressions. Using this

structure, we can simulate all kinds of operators and

mathematical functions, and prioritize operators when

defining the expression. Expression retrieval from this

structure with infix traverse can be easily done.

Mathematical expression can be also indicated in the

form of object-tree in tree structure. For example

object tree expression for expression

 can be written as follows.

Minus (Times (Divide (Plus (Var ('x') , Var ('y')) , Num (2)),

Plus (Var ('a'), Var ('b'))) , Num (12))

This structure can be easily evaluated in a recursive

manner. Every node in this structure has an operator

or an operand. Each child node is an operand for its

parent node, and structurally it can also be an operator.

Thus making mathematical expressions in this

structure is easy to evolve and evaluate.

There are several types of mathematical expressions

that can be mentioned to some of them as follows:

 Arithmetic expressions that contain only numbers

and operators.

 Mathematical expressions containing variables

(operations such as derivatives, limits, etc.)

Equality expressions (equations).

Also mathematical expressions can be solved in two

forms of numerical or analytical. Numerical approch

have any approximations error, and have been

developed variety method for the numerical solution

via computer. In this paper proposed a method for

generate mathemathical expression that suite for

numerical and analytical solution. Proposed

methodology has three main steps as following:

 Developing a grammar.

 Create a template according grammar.

 Developing a template class via programming

language.

3. DEVELOPING A CONTEXT-FREE GRAMMAR

To work with mathematical expressions in Computer

Algebra Systems, defining a framework is necessary for

identifying and/or generating mathematical

expressions. BNF is useful to define context-free

grammars in languages, because it has simple

notations, recursive structures, and is widely available

supported by many compiler generation tools such as

YACC [29], LEX [30], and JavaCC [31, 32]. Ryan et al in

[33] developed a BNF grammar for identification and

production of mathematical expressions. Inspired

proposed grammar in [33], we have developed an

Extended-BNF grammar in Algorithm 4 for

mathematical expressions.

G={N,T,P,S}

N={expr,op,func,var,number,digit}

T={X,Sin,Cos,Tan,Log,Exp,Sqrt,+,-,*,/,^}

S={expr}

Productions :

<expr>∷= <expr> <op> <expr> | (<expr> <op> <expr>)

 |<func>(<expr>) |<var> |<Number>

<op>∷= ' +' | '-' | '*' | '/' |'^'

<func>∷= ' Sin ' | 'Cos' | 'Tan' | 'Log' | 'Exp' | 'Sqrt'

<var>∷= 'X'

<number>∷= '-'? <digit> + ('.’ <digit>+)?

<digit>∷=[' 0'-'9']

Algorithm 4: An EBNF grammar for mathematical expression

Using grammar of Algorithm 4, all mathematical

expression can be identified. In this grammar five

operators and six functions have been placed. Other

functions can be added to the grammar if needed. Note

that in this grammar, the priority of operators has not

been taken into consideration, while mathematical

expressions have different priority levels based on

different operators. Since in this article we aim to use

this grammar as mathematical expression generator,

we do not need consider priority levels. Hence present

grammar can be used for mathematical expression

generation, using its random grammar rules.

A general and structural template can be defined for

generation of different and desired mathematical

expression, using Template-Context Grammar.

Definition 1: A template context grammar is a system

G = <N, T, P, S>, where N and T are disjoint finite

nonempty sets (non-terminal and terminal alphabets),

 (the start symbol), P is a nonempty finite set of

rules in the form u→v, I where u N, v (N ∪ T)* and I

is a positive integer number, denoting the number of

iterations for the current rule.

This type of grammar has a structure similar to

programmed grammars. The only difference is that

right side of rules in this grammar is composed of two

sections. First part is similar to CFG grammars, and

second part involves an integer number, identifying the

number of frequency for this rule. Using such kind of

grammar, we can generate mathematical expressions

with identified features. It is, worth to mention that by

International Journal of Innovative Studies in Sciences and Engineering Technology

(IJISSET)

ISSN 2455-4863 (Online) www.ijisset.org Volume: 3 Issue: 11 | November 2017

© 2017, IJISSET Page 30

using such types of grammar, we can generate general

frames for expressions, and some features including

domain of random numbers can be considered as

parametric for coefficients, number of expressions etc.

at the time of implementation. In the following sections,

we will explain template generation method and its

implementation in Java language, using grammar.

4. GRAMMAR MANIPULATION

In order to implement mathematical expression

generation using Template-Context Grammars, some

functions can be developed for each non-terminal of

grammar. This function calls other functions, according

to grammar rules. Frequency of each grammar rule

(part two in right side of rules) is implemented through

placing the grammar inside a loop. As an example, to

implement a rule in the form of u→v ,I, supposing that

equivalent function of u and v are uFunc and vFunc

respectively, pseudo code of Algorithm 5 can be

proposed.

Public String uFunc :

Str “”

Repeat for I times

Str Str & vFunc

Return Str

Algorithm 5: Pseudo code for implement of a template-context

rule

Algorithm 5 is appropriate for rules having only one

term in their right hand side. For those rules in the

form of u→(v1,v2,..,vn),I each call should be randomly

accomplished from different rules. Pseudo-code of

Algorithm 6 indicates the above mentioned case.

Public String uFunc :

Str “”

Repeat for I times

n Generate a rule index randomly

Str Str & vnFunc

Return Str

Algorithm 6: Pseudo code for implement of a template-context

multi rule

Using pseudo-code of Algorithm 6, we can develop

appropriate function for all considered grammar rules.

Another important point in designing template is

adding special characteristics and generating more

limited expressions in accordance with user's

application. To implement such limitations, we can

consider variables using object-oriented concept and

based on it we can change some generated functions in

accordance with type of limitation. Doing so, we can

develop classes for all kinds of considered frame. Most

limitations occur while generating numbers. In

accordance with underlying domain of a frame, we can

do this using Rand function.

When implementing object oriented, we can use some

variables to make limits, parametric and generate

considered mathematical expressions through

initializing these parameters. Doing so, we can develop

classes for each kind of considered frames. In what

follows some examples of frame and implementations

appropriate with it, will be presented.

5. AUTOMATIC EXPRESSION PRODUCTION

In this proposed CFG grammar, a random mathematical

expression can be generated starting with a non-

terminal and random selection from grammars in

which our non-terminal has been placed in left side.

The pseudo-code shown in Algorithm 7 indicates

mathematical expression method, based on the

grammar of Algorithm 4.

AST ← <expr>

repeate while a Non-Terminal exist in AST

E ← select a NonTerminal symbol in AST

subAST ←select a rul that begin by E, randomly

AST ←put subAST in place E of AST

inorder traverse AST and get mathematical expression

Algorithm 7: Pseudo code for generate a mathematical

expression randomly

According to the pseudo-code in Algorithm 7, we can

generate a mathematical expression with random

characteristics. Number and operators, and size of

generated numbers are unpredictable in this

expression. For example it is possible to choose the rule

<expr>:= <number> at initial stages. In this situation,

through selecting a number instead of <number>, it will

be generated mathematical expression without any

operator. Similarly, it is possible to generate a

mathematical expression by only one variable, like

"f(x) = x". On the other hand, rules of grammar should

be chosen such that the length of generated

mathematical expression is extremely long or even

infinite. Stochastic Grammars [34] can be used to

control generated mathematical expressions. With

initialize the probabilities for each rule in the

beginning, and changes during generation process; we

can generate more limited mathematical expressions.

The restriction that can be created through this is the

restriction on the string length. So that, at the time of

International Journal of Innovative Studies in Sciences and Engineering Technology

(IJISSET)

ISSN 2455-4863 (Online) www.ijisset.org Volume: 3 Issue: 11 | November 2017

© 2017, IJISSET Page 31

generation and arriving to identified level of tree, the

probability of generating for all rules except rules that

will be generate leave node (rules that generate

number or variable) reaches zero, and preventing tree

development and increase in its length. Length

restriction can be applied through achieve a certain

number of generated nodes. By doing so, long

mathematical expressions will not be generated. The

pseudo-code in Algorithm 8 is a changed form of that in

Algorithm 7 pseudo-code through limiting tree product

at nth node.

AST ← <expr>

index←0

repeate while a NonTerminal exist in AST

E ← select a NonTerminal symbol in AST

if index<n then

subAST ←select a rul that begin by E,

randomly

else subAST ←select a rul

from<expr>∷=<number>|<var>

AST ←put subAST in place E of AST

update index according selected rule /*

increase by 1 or 2 */

inorder traverse AST and get mathematical

expression

Algorithm 8: Modified pseudo code with level restriction for

generate a mathematical expression

Using the pseudo code in Algorithm 8, it is possible to

generate longest limited mathematical expression; still

some other limitations should be taken into

consideration when generating mathematical

expressions. For example, generate a quadratic

equation or an ambiguity expression for limit question.

6. SIZE EVALUATION OF PRODUCTION SPACE

Mathematical expression generated by the provided

grammar in Algorithm 4, can be selected randomly or

can be selected from infinite number of expressions. If

we limit generated expressions by identified

mechanisms such as maximum nodes or maximum

level of trees, it is possible to convert infinite space of

the problem to finite space. Statistical space of problem

can be calculated in two methods.

Method 1: suppose that applied limit of generating

mathematical expressions is related to the number of

nodes. In this case we can do as following, to calculate

possible number of states. Number of trees produced

by n nodes, is calculated using equation 1.

 (1)

Considering that underlying generated trees have a

maximum of n nodes, total number of trees generated

by n nodes can be calculated using equation 2.

 (2)

The obtained number from equation 2 is the number of

possible trees. While there are various combinations

for each tree, based on operators or functions that can

be located in nods, and number or variables that

located in leaves. In the following, statistical population

space at limit of number of tree levels will be calculated

more accurately.

Method 2: Statistical space of problem can be

considered based on restriction of tree level. Moreover

in each produced tree structure, different integrations

can be generated through considering operators,

functions, variables, and interval of random numbers.

Suppose that mathematical expressions which are to be

generated have the following characteristics:

 Number of variable : v

 Number of figures (interval of numbers produced

randomly): n

 Number of operator : m

 Number of mathematical function (such as sin, cos,

etc.) : f

In this case number of possible states for a node will be

equal to equation 3:

 (3)

Such number is equal to the number of tree states at 0

levels. To calculate number of states at 1st level,

different states developed from a node, should be taken

into consideration. These states are shown in Fig. 1.

Fig. 1: The possible scenarios of binary tree in first level.

International Journal of Innovative Studies in Sciences and Engineering Technology

(IJISSET)

ISSN 2455-4863 (Online) www.ijisset.org Volume: 3 Issue: 11 | November 2017

© 2017, IJISSET Page 32

Nodes of 1st degree can have f state and quadric nodes

can have m state. Moreover like tree, leave can be

considered with level 0. Therefore, the total number of

possible states for the tree level 1 is equivalent to

equation 4:

 (4)

For the second level of tree, we can consider states

displayed in Fig. 1, in a way that these states can be

used as substitution for leave of level 1. Fig. 2 indicates

this issue.

Fig. 2: The possible scenarios of binary tree in second level

Considering Fig. 2, we can use equation 5 for

calculating the number of possible mathematical

expressions of tree with level two.

 (5)

Generalizing equation 5, we can obtain equation 6 for

calculating the number of producible mathematical

expressions by tree with level n.

 (6)

For example, Table 1 shows the number of possible

expressions for some levels of the tree. For Table 1,

number of operators is five, number of functions is

eight, number of variables is one, and number interval

is ranges from -50 to + 50.

Table 1: Number of possible mathematical expression

generating in various level of tree

Level of Tree Number of States

Level 0 S0=1+101=102

Level 1 52938

Level 2 14,012,635,662

… …

Level 6 6.743220307892116 e+172

Level 7 2.273551006038432 e+ 346

7. METHODOLOGY ILLUSTRATION

7.1. Generate SMEs Randomly

As seen in previous section, generation space of

mathematical expressions in structure tree is a large

and probability of generating expressions with special

characteristics is low. To produce expressions in which

identified characteristics are considered, two methods

can be used. In the first method, through changing the

grammar generator of mathematical expressions, we

can design expressions appropriate with underlying

type. This method is difficult and complex by the

current grammars. The other method is designing

templates for automatic generation of expressions in

which considered characteristics have been placed. We

will discuss more about both generation methods in the

following.

7.2. Generate SMEs via Grammar

In this method a separate grammar generator should

be designed for each expression. Generated grammars

are of EBNF type. While designing them, considered

expression characteristics should be taken into

account. In following sections some examples from this

type of expression generator have been presented.

7.2.1 First Degree Equation

When generating first degree equation, both sides of

equation should have expressions with maximum

degree 1. To do so, EBNF grammar can be developed in

a way that the possibility of generating equations with

degrees higher than one will be diminished. Such states

usually occur while using the operator ‘*’. Hence in the

case of seeing operator ‘*’, we can send operands to

rule (<expr'>) in which generation of variable is

impossible. Algorithm 9 lists grammars related to this

grammar.

G={N,T,P,S}

N={expr, expr',S, var, number, digit}⊆ Σ

T={x,+,-,*}⊆Σ

P:

< S >∷= <expr> ' =' <expr> | <expr> ' / ' <expr> '=' <expr' >

<expr>∷= <expr> ' +' <expr>

| <expr> ' -' <expr> | number | var

<expr>∷= <expr> ' *' <expr'> | <expr' > ' *' <expr>

<expr'>∷= <expr'> ' +' <expr'>

|<expr' > ' -' <expr'>

| <expr'> ' *' <expr'> | Number

<var>∷= 'x'

<number>∷= '-'? <digit> + ('.'<digit>+)?

<digit>∷=[' 0'-'9']

Algorithm 9: EBNF grammar for first degree equation

generation

Note that grammar in Algorithm 9 has been considered

only for division operator at a simple state. If we want

to use division operator generally, then grammar

design will be more complex.

International Journal of Innovative Studies in Sciences and Engineering Technology

(IJISSET)

ISSN 2455-4863 (Online) www.ijisset.org Volume: 3 Issue: 11 | November 2017

© 2017, IJISSET Page 33

7.2.2 Quadratic Equation

Similar to generation of first degree equations, we can

write a grammar for generation or identification of

quadratic equations. In the grammar of Algorithm 10

presented for quadratic equations no division operator

will be generated.

G={N,T,P,S}

N={expr,expr',expr'',S,var,number,digit}

T={x,+,-,*,/,^}

P:

< S >∷= <expr> '=' <expr>

<expr>∷= <expr> ' +' <expr>

| <expr>' -'<expr> | number | var |var2

<expr>∷= <expr'> ' *' <expr'>

|<expr>' *'<expr''>|<expr'' >' *'<expr>

<expr'>∷= <expr'>' +'<expr'>

|<expr' >' -'<expr'>|<expr' >' *'<expr''>

| <expr''>' *'<expr'> | number | var

<expr''>∷= <expr''>' +'<expr''>

|<expr'' >' -'<expr''>

| <expr''>' *'<expr''> | Number

<var>∷='x'

<number>∷= '-'? <digit> + ('. '<digit>+)?

<digit>∷=[' 0'-'9']

Algorithm 10: EBNF grammar for quadric equation

Although all expressions generated in this way are of

quadratic equation, still there is no identified control of

length, number of operators, and expression

sophistication (complexity). To apply limitation at

expression generation, special methods such as limiting

generated tree level, using probable grammars, and

changing their probabilities can be used depending on

tree level etc.

8. PRODUCTION OF MATHEMATICAL

EXPRESSION VIA TEMPLATES

Another method to generate identified mathematical

expressions is using templates which have specific

characteristics. In these templates, random cases

should be identified. While processing templates,

underlying places are replaced with random values to

generate random expressions. For example to produce

a polynomial with identified number, we should

generate a template that involves intervals for the

number of expressions, their degree, and coefficients.

Algorithm 11 shows a simplified template for

polynomials.

Polynomial:

Number of Monomials: (Na, Nb)

Polynomial Degree : (Da, Db)

Coefficient of Monomials : (Ca, Cb)

Algorithm 11: A simple template structure for polynomials

However, using this method is not appropriate, since
we need to define different structure for expressions of
different types. Moreover, different processing should
be considered for generating different mathematical
expressions. To use template methods in generating
mathematical expressions we need a special and
unique method. The method should be universal and
capable of defining templates for all kinds of
expressions with identified features. Proposed
structure of this article is tree structure and a grammar
can be developed for its identification and generation.
Suggested grammar has special characteristic, which is
entitled Template-Context Grammar in this article. This
grammar is a grammar of developed structure from
Programmed Grammars [35] class. Structure of these
grammars will be explained in the following.

8.1 Examples of Mathematical Expression
Templates

In this section we are developed two examples that
show how we can create template classes for
mathematical expression generators.

8.1.1 Polynomial Template

In this section, using the suggested grammar structure
we would like to develop a grammar which can be used
as template for generating polynomials. Considering
that polynomials are composed of different terms
added to or subtracted from each other, and each term
(monomial) has its own identified structure, a grammar
such as the one in Algorithm 12 can be suggested.

G={N,T,P,S}
N={E,T, T', R, R', F,num, digit,S}
T={x,+,-,*,^}
P:
S →T E ,1
E →(+T | -T) , R
T →(F | F "*" T') ,1
T'→("x" | "x" R'),1
R →num,1
R'→num,1
F →num , 1
num→ '-'? digit + ('.' digit+)?
digit→[' 0'-'9']

Algorithm 12: A template-context grammar for polynomials

Considering the grammar in Algorithm 12, we can
generate random polynomials. Although, apparently,
these polynomials are expressed generally, there is
limiting probability in it. Characteristics which can limit
polynomials are number of terms, coefficients of each
term and polynomial degree. In the time of
implementation, considering a simple process and
putting parameters to generate numbers related to
each section, we can formulate considered polynomial.

In java programming language, a class can be

developed which can be appropriate for generation of

International Journal of Innovative Studies in Sciences and Engineering Technology

(IJISSET)

ISSN 2455-4863 (Online) www.ijisset.org Volume: 3 Issue: 11 | November 2017

© 2017, IJISSET Page 34

desired polynomial. In this class, some parameters are

considered to determine three above mentioned limits:

interval of number of terms, coefficients, and degree of

polynomial. Algorithm 13 indicates codes related to

polynomial generator class, based on grammar of

Algorithm 12.

Class polynomialTemplate {

Ranges termsRange = new Ranges();

Ranges coeffRange = new Ranges();

Ranges degreeRange = new Ranges();

Public String polynomialGenerate () { /*

Equivalent to the start symbol (S). */

return term() & expr();

}

Public String expr() { /*

Equivalent to the E symbol. */

String str ;

int n = termRange.min + (int) (Math.random(

)*(termRange.max- termRange.min));

for (int i=0; i< n ; i++){

int t = (int)(Math.random()*2);

if(t==0) str = str & “+” & term() ;

else if (t==1) str = str & “-” & term() ;

}

return str;

}

Public String term() { /* Equivalent to the T symbol. */

int t = (int)(Math.random()*2);

int f = degreeRange.min + (int) (Math.random(

)*(degreeRange.max- degreeRange.min));

if (t==0) return Integer.toString (f); /*

T F */

else return Integer.toString (f) & “*” & term2 (); /*

T F * (‘x’ | ‘x^’ R) */

}

Public String term2 () { /* Equivalent to the T’ symbol. */

String str;

int t = (int) (Math.random()*2);

if (t==0) str = “x”;

else {

int d = coeffRange.min + (int) (Math.random(

)*(coeffRange.max- coeffRange.min));

str = “x^” & Integer.toString (d);

}

return str;

}

}

Algorithm 13: Polynomial generator class in Java

The class shown in Algorithm 13 is able to generate all

kinds of parametric polynomials. Using this class and

determining value of parameters termsRange,

coeffRange, and degreeRange, each template will be

definable. As an example, to define a template to

generate polynomials whose number of terms is

between three and five, with polynomial degree of 2-6

and polynomial coefficient of 5-10 we can act as

Algorithm 14.

polynomialTemplate PolyTmp1 = new polynomialTemplate ();

PolyTmp1. termsRange.min = 3; PolyTmp1. termsRange.max = 5;

PolyTmp1. degreeRange.min = 2; PolyTmp1. degreeRange.max =

6;

PolyTmp1. coeffRange.min = -5; PolyTmp1. coeffRange.max = 10;

Algorithm 14: An example template for polynomial template

class

The example shown in Algorithm 14 is a sample

polynomial in which a node involving random

polynomial with underlying characteristics can be

generated through calling function

PolyTmp1.polynomialGenerate(). By doing so, a defined

class can be considered as Dynamic Template.

8.1.2 Quadric Trigonometric Equation Template

As another example, we can consider quadric

trigonometric equation generation. According to

proposed grammar, a grammar can be developed for

such kind of equations as template. This grammar can

be seen in Algorithm 15.

G={N,T,P,S}

V={E,E',T, T', R, R', F,num, digit,S}

T={sin x, cos x ,tan x, cotan x, +, -, *, ^, =}

P:

S →(E "=" E | E "/" E "=" F),1

E →TE' ,1

E' →(+T | -T) , R

T →(F | F "*" T') ,1

T'→(T'' | T'' "^2"),1

T''→("sin x" |"cos x"| "tan x" | "cotan x"), 1

R →num,1

F →(N | √N), 1

N →(num | num / num), 1

num→ '-'? digit + ('.' digit+)?

digit→[' 0'-'9']

Algorithm 15: A template-context grammar for quadric

trigonometric equations

According to the grammar in Algorithm 15, the

generated equations can be limited to two intervals:

Number of terms for each side of equal, and coefficients

of each term. It is, possible for this special example to

consider other characteristics during implementation.

For example, a parameter can be considered to

determine the type of triangles function which

International Journal of Innovative Studies in Sciences and Engineering Technology

(IJISSET)

ISSN 2455-4863 (Online) www.ijisset.org Volume: 3 Issue: 11 | November 2017

© 2017, IJISSET Page 35

generating term will be involve only that function and

no other triangle functions will appear.(it is of course

possible to choose triangle functions randomly, before

each call).

9. CONCLUSIONS

In this paper, we have presented Template-Context

Grammar and object oriented classes, designed to

support practical template based mathematical

expression generations. By using this grammar type a

grammar can be developed for generating

mathematical expressions. Designed grammar can

change to classes during implementation, which has

limiting parameters. For example it is possible to

implement number of terms or maximum degree of

polynomial in a class as parameter. By doing so, we can

design dynamic templates for to generating

mathematical expressions. These templates are in the

form of classes. By designing different frames for the

type of term, we can have a data base of templates. This

data base can be used for generating automatic tests or

other systems which require mathematical expressions

with special format.

REFERENCES

[1] McRoy, S.W., S. Channarukul, and S.S. Ali. “YAG: A

template-based generator for real-time systems”.

in Proceedings of the first international

conference on Natural language generation, 2000.

Vol 14. Association for Computational Linguistics.

[2] Theune, M., et al., “From data to speech: a general

approach”. Natural Language Engineering, Vol 7,

No 1, 2001. pp. 47-86.

[3] White, M. and T. Caldwell. “A practical, extensible

framework for dynamic text generation”. in

Proceedings of the Ninth International Workshop

on Natural Language Generation (INLG). 1998.

[4] Stenzhorn, H. “XtraGen: a natural language

generation system using XML-and Java-

technologies”. in Proceedings of the 2nd workshop

on NLP and XML, 2002. Vol 17. Association for

Computational Linguistics.

[5] Schellekens, D., B. Preneel, and I. Verbauwhede.

“FPGA vendor agnostic true random number

generator”. in International Conference on Field

Programmable Logic and Applications, 2006.

FPL'06. IEEE

[6] Tkacik, T.E., “A hardware random number

generator”, in Cryptographic Hardware and

Embedded Systems-CHES 2002 2003, Springer. pp.

450-453.

[7] Jun, B. and P. Kocher, “The Intel random number

generator”. Cryptography Research Inc. white

paper, 1999.

[8] Cohn, C.E., “RANDOM NUMBER GENERATOR”,

Google Patents , 1972.

[9] Jakimoski, G. and L. Kocarev, “Chaos and

cryptography: block encryption ciphers based on

chaotic maps”. IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications,

2001. Vol 48, No 2: pp. 163-169.

[10] Kocarev, L., “Chaos-based cryptography: a brief

overview”. Circuits and Systems Magazine, IEEE,

2001. Vol 1, No 3: pp. 6-21.

[11] Lagarias, J., “Pseudorandom number generators in

cryptography and number theory”. Cryptology and

computational number theory, 1990. Vol 42: p.

115-143.

[12] Ferrenberg, A.M., D. Landau, and Y.J. Wong,

“Monte carlo simulations: Hidden errors from

‘‘good’’random number generators”. Physical

Review Letters, 1992. Vol 69, No 23: pp. 3382.

[13] Coates, R.F., G.J. Janacek, and K.V. Lever, “Monte

Carlo simulation and random number

generation”. IEEE Journal on Selected Areas in

Communications, 1988. Vol 6, No 1: pp. 58-66.

[14] Schaeffer, L., “Application of random regression

models in animal breeding”. Livestock Production

Science, 2004. Vol 86, No 1: pp. 35-45.

[15] Stojanovski, T. and L. Kocarev, “Chaos-based

random number generators-part I: analysis

[cryptography]”. IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications,

2001. 48(3): p. 281-288.

[16] Epstein, M., et al., “Design and implementation of a

true random number generator based on digital

circuit artifacts”, in Cryptographic Hardware and

Embedded Systems-CHES 2003, Springer. pp. 152-

165.

[17] Gilbert, E.N., “Random graphs”. The Annals of

Mathematical Statistics, 1959: pp. 1141-1144.

[18] Langkilde, I. and K. Knight. “Generation that

exploits corpus-based statistical knowledge”. in

Proceedings of the 36th Annual Meeting of the

Association for Computational Linguistics and 17th

International Journal of Innovative Studies in Sciences and Engineering Technology

(IJISSET)

ISSN 2455-4863 (Online) www.ijisset.org Volume: 3 Issue: 11 | November 2017

© 2017, IJISSET Page 36

International Conference on Computational

Linguistics, 1998-Vol 1. Association for

Computational Linguistics.

[19] Van Deemter, K., E. Krahmer, and M. Theune, “Real

versus template-based natural language

generation: A false opposition?”, Computational

Linguistics, 2005. Vol 31, No 1: pp. 15-24.

[20] Becker, T. “Practical, template-based natural

language generation with TAG”. in Proceedings of

TAG. 2002.

[21] Kumar, A.N., “Explanation of step-by-step

execution as feedback for problems on program

analysis, and its generation in model-based

problem-solving tutors”. Technology, Instruction,

Cognition and Learning (TICL) Journal, 2006. Vol

4, No 1.

[22] Yoshikawa, T., K. Shimura, and T. Ozawa. “Random

program generator for Java JIT compiler test

system”. in Proceedings Third International

Conference on Quality Software, 2003. IEEE.

[23] Melis, E., et al., “ActiveMath: A generic and

adaptive web-based learning environment”.

International Journal of Artificial Intelligence in

Education (IJAIED), 2001. Vol 12: pp. 385-407.

[24] Hoffman, D., et al., “Two case studies in grammar-

based test generation”. Journal of Systems and

Software, 2010. Vol 83, No 12: pp. 2369-2378.

[25] Klai, S., T. Kolokolnikov, and N. Van den Bergh.

“Using Maple and the web to grade mathematics

tests”. in Proceedings of International Workshop on

Advanced Learning Technologies, IWALT 2000.

IEEE.

[26] Almeida, J.J., et al. “Math exercise generation and

smart assessment”. in 8th Iberian Conference on

Information Systems and Technologies (CISTI),

2013. IEEE.

[27] Tomás, A.P. and J.P. Leal, “A CLP-based tool for

computer aided generation and solving of maths

exercises”, in Practical Aspects of Declarative

Languages2003, Springer. pp. 223-240.

[28] Veldhuizen, T., “Expression templates”. C++

Report, 1995. Vol 7, No 5: pp. 26-31.

[29] Johnson, S.C., “Yacc: Yet another compiler-

compiler”. Bell Laboratories Murray Hill, NJ ,

1975, Vol. 32.

[30] Levine, J.R., T. Mason, and D. Brown, “Lex & yacc”,

O'Reilly Media, Inc , 1992.

[31] Viswanadha, S. and S. Sankar, “Java compiler

compiler (JavaCC)-The java parser generator”.

Java. net, https://javacc. dev. java. net/, accessed

Aug, 2009. 23.

[32] Kodaganallur, V., “Incorporating language

processing into java applications: A JavaCC

tutorial. Software”, IEEE, 2004. Vol 21, No 4: pp.

70-77.

[33] Ryan, C. and M. O’Neill, “Grammatical evolution: A

steady state approach”. Late Breaking Papers,

Genetic Programming, 1998: pp. 180-185.

[34] Newmeyer, F.J., “Grammar is grammar and usage

is usage”. Language, 2003: pp. 682-707.

[35] Rosenkrantz, D.J., “Programmed grammars and

classes of formal languages”. Journal of the ACM

(JACM), 1969. Vol 16, No 1: pp. 107-131.

AUTHORS' BIOGRAPHY

Sahereh Hosseinpour: She is

working as a lecture and Phd.

student, Dept. of Computer

Engineering at Ataturk University in

Turkey.

Dr.M.Mohammad R. A. Milani: He

is working as a Asst. Professor, Dept.

of Computer Engineering at Ataturk

University in Turkey.

Dr.Huseyin PEHLIVAN: He is

working as a Asst. Professor, Dept. of

Computer Engineering at Karadeniz

Technical University in Turkey.

