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Abstract: The traditional statistical classifiers have 

been later used in many applications across different 

disciplines. However, they can attend problems in high 

dimension space. The Classification and Regression Trees 

(CART) presented an alternative solution which is not 

based on normality assumption like some classical 

statistical classifiers such as the Bayesian decision rule. 

We perform, in the present research, a new insight to 

compare different models of CART decision trees by an 

adjusted non-parametric probability density function 

estimate of misclassification error rates. Such estimator 

is computed by the diffeomorphism-kernel Plug-in 

algorithm which considers the error rates positivity 

support. The bagging and Adaboost training algorithms 

may improve the classification efficiency for CART 

decision trees. Some stochastic simulations try to prove 

statistical stability criterion. After that, the experimental 

results will be presented in handwritten digits 

recognition problem in the features space. Different 

invariant descriptors will be compared. 

Keywords: Adaboost, Bagging, Classification And 

Regression Tree, Probability density estimate, 

diffeomorphism-kernel Plug-in algorithm, Stability. 

1. INTRODUCTION 

In practice, it is well known that the precision of the 

estimation, in high dimension spaces, requires non-

realistic training samples size. Thus, the sample data 

size required to obtain satisfying classification 

accuracy, increases exponentially with data space 

dimension. Hence, the dimension reduction step is 

needed to overcome this problem in pattern 

recognition. The traditional statistical methods such as 

the Bayesian decision theory and the Linear 

Discriminant Analysis have been successfully used in 

many application areas, as the linear dimension 

reduction and classification purposes. However, the 

Bayesian classifier [7] is based on the normality 

assumption. The Classification and Regression Trees 

(CART) [4] present an alternative solution to overcome 

the normality hypothesis. In the same direction, the 

Artificial Neural Networks (ANNs or NNs) have proved 

quite successful to solve complex problems in many 

applications [18]. Thus, we can find them working in 

data classification and non-linear dimension reduction. 

However, the lack of control over its mathematical 

formulation explains the instability of its classification 

results in some situations, compared to the statistical 

approach. 

In [5, 6, 14, 32], the decision trees have been compared 

to the ANNs. Some articles involved CART decision 

trees in their comparative study [1, 28]. Brown and al. 

have proved in [5] that NNs prediction accuracy was 

better than that of CART models on multimodal 

classification problems where data sets are large with 

few attributes. The authors have also concluded that 

the CART model did better than the NNs one with 

smaller data sets and large numbers of irrelevant 

attributes. For non-linear data sets, NNs and CART 

models outperform Linear Discriminant Analysis [6]. 

In order to compare the different approaches, most of 

the researchers have tried to compare their accuracy 

prediction while forgetting the instability criterion of 

some classifiers. Thus, the objective comparison 

studies stayed marginal. In the present study, we are 

performing a new criterion to conduct a comparative 

study between several classifiers by estimating the 

probability density function (pdf) of their error rates. 

Since the support of an error rate probability density is 

bounded, we used the diffeomorphism-kernel-pdf-

estimate bandwidth optimization by the plug-in 

algorithm.  

For this comparative study, we have focused on the 

numerous classification procedures with proven 

effectiveness to improve the classifiers efficiency like 

the bootstrap aggregation and Adaboost algorithm for 

the CART decision trees.  

The present manuscript is structured as follows: We 

begin in section 2 by recalling the classification and 

regression trees and the techniques which may 

improve their stability degree. The main idea of the 

classifiers stability comparison is to estimate their 

error rates density. Thus, the non-parametric kernel 

method is described in the subsection 2.2. While the 

classifiers misclassification rates (MCR) density 
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functions are known by their bounded support, we 

refer to the diffeomorphism-kernel plug-in algorithm. 

In section 3, we introduce the new criterion based on 

the diffeomorphism-kernel plug-in algorithm. The 

comparison studies are performed by visualizing the 

results through stochastic simulations of multivariate 

Gaussian distributions. In section 4, we will apply these 

comparative analyses to the evaluation of real pattern 

recognition problem. So, we intend to test the different 

classifiers efficiency for the handwritten digits 

recognition problem by classifying their corresponding 

descriptors. Such features form a set of invariant 

parameters under similarity transformations and 

closed curve parameterizations. This set has good 

properties as completeness and stability.  

2. STATE OF THE ART 

In the present section, we are going to review the most 

important topics for CART decision trees. The 

estimation of the classifiers error rates density function 

presents the basic idea for our comparative analysis. 

There are two types of methods for probability density 

estimating; parametric and non-parametric. The 

parametric techniques (such as the maximum-

likelihood estimation and the Pearson system) are 

based on some assumptions and specified statements. 

Since the misclassification rates densities are a priori 

unknown, the non-parametric methods are the most 

accurate. The histogram estimator, the orthogonal 

functions and the kernel method present the most 

frequently nonparametric techniques used in the 

literature. The histogram method has the disadvantage 

of discontinuity. Although the orthogonal function 

technique is suitable for any type of support, it may 

encounter the Gibbs effect.  We suggest using the 

kernel method in our research. 

2.1 Classification and regression tree 

The Classification and Regression Tree (CART) is a non-

traditional statistical non-parametric model developed 

by Breiman et al. in [4]. The CART is obtained by a 

binary recursive partitioning procedure which can be 

graphically illustrated as a decision tree. The CART 

models have been used in the areas of prediction and 

classification. In our research, we have used the 

classification-type CART model which is applied for 

classifying discrete dependent variables. 

First, the CART uses the Gini index for its impurity 

function to construct a large tree and then prune it to a 

smaller size to minimize an estimate of the 

misclassification error. It employs the 10-folds 

(default) cross validation for this purpose. Thus, 

pruning CART decision trees assists in its architecture 

stability. Furthermore, the Bagging and Boosting 

algorithms present general combining methods for 

stabilizing the CART decision trees. 

Unlike bagging, which is based on a simple averaging of 

predictions, boosting presents an iterative procedure 

which uses a weighted average of results obtained from 

applying a prediction method to various samples. 

Boosting is a method of combining classifiers, which 

are iteratively created from weighted versions of the 

learning sample, with the weights adaptively adjusted 

at each step to give increased weight to the cases which 

were misclassified on the previous step. The final 

predictions are obtained by weighting the results of the 

iteratively produced predictors. In addition, boosting is 

originally applied to weak learners (having an error 

rate of 50%) whereas this is not the case with bagging. 

Adaboost is a boosting algorithm developed by Freund 

and Schpire [8] to be used with classifiers. There are 

two versions of Adaboost: Adaboost.M1 and 

Adaboost.M2. When only two classes are involved, 

there is no difference between the two versions. 

However, when the number of classes increases, 

Adaboost.M2 gives better results than Adaboost.M1. 

Indeed, for the method to be effective, the weighted re-

substitution error rates must be less than 0.5 for the 

weak learners, which can be difficult to achieve when 

several classes are involved. 

 2.2 The kernel estimate method 

The classifiers stability evaluation criterion is based on 

their error rates density estimation. For this purpose, 

we refer to the non-parametric kernel method.  

The KDE (Kernel Density Estimate) is a non-parametric 

estimate which have been introduced by Rosenblatt in 

1956 [29] and developed by Parzen in 1962 [25]. 

Considering a sample of size N noted by (X1, …., XN), the 

density probability function is expressed by:   
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where hN is called bandwidth or smoothing parameter 

and K is a kernel function having the following 
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In this study, K(.) is chosen as the Gaussian kernel 

which is expressed by: 
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Following an asymptotic study, the MISE (Mean 

Integrated Square Error) is approximated by (ref):   
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Minimizing the MISE, the optimal value of the 

smoothing parameter, noted by 
*
Nh , has the following 

expression:  

 
 

M (K) can easily be determined analytically or 

numerically. However, we note that J(f) is a function of 

the unknown density. Several methods have been 

developed in the literature in order to approach the 

optimum value of the smoothing parameter [33]. 

In this paper, we deal with the semi-bounded densities 

because the error rate is strictly positive. Therefore, a 

more accurate estimate will be obtained using the 

diffeomorphism-kernel method [30, 31] which 

significantly reduces the Gibbs’ effect. This estimator is 

a generalization of the KDE. It is suitable for the 

functions defined on the interval [a, b]. The density 

function is expressed by: 
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where  is a C1-diffeomorphism which have the infinity 

for limit as ‘x’ approaches ‘a’ or ‘b’.  

The problematic of optimizing the smoothing 

parameter can be resolved by using the same methods 

as those used for conventional kernel analysis.  

However, as shown in [34], an asymptotic study of the 

diffeomorphism-kernel estimate, allows better 

approach to optimal smoothing parameter in the MISE 

sense. Then, its expression becomes the following: 
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In this section, we will recall, in a first time, the 

conventional plug-in algorithm and the 

diffeomorphism-kernel plug-in algorithm. Then, we are 

going to show, through a comparative study, the benefit 

of using the diffeomorphism-kernel plug-in algorithm 

for densities having a semi bounded support.  

2.2.1. Conventional Plug-in algorithm 

The plug-in algorithm allows a close estimation of the 

optimal value of the smoothing parameter for kernel 

estimator using a recursive resolution. In a first time, 

the unknown density f is estimated using a random 

value of hN noted hN
0. This estimate is, of course, a bad 

estimate. However, this first approach to the unknown 

density will give new value of hN
1 which is closer to the 

optimal value. So, hN
1 is used to re-estimate the 

unknown density and so on.   

The different steps of conventional Plug-in algorithm 

are the following: 

Step 1: initialisation of M(K) and J(f). 

Step 2: computing
)0(

Nh . 

Step 3: estimation of the pdf )0(f . 

Step 4: re-estimation of )()( fJ k . 

Step 5: return to the second step. 

Step 6: stopping the algorithm when the difference 

between 
)(k

Nh and 
)1( k

Nh is very low (less than 1%). 

2.2.2. Diffeomorphism-Kernel plug-in algorithm 

The implementation of this extended version presents 

further difficulties compared to classical plug-in 

algorithm. Indeed, for the plug-in algorithm for KDE, 
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M(K) is a constant which can be determined 

analytically or numerically. With regard to the plug-in 

algorithm adapted to DKDE, M(K) depends on unknown 

pdf. Similarly, J(f) depends not only on f'', but also on f 

and f'. Therefore, the complexity of the plug-in 

algorithm adapted to DKDE is increasing.  

We describe below the algorithm and the computation 

complexity, as follows: 

Step 1: Initialize arbitrary     . In practice   
     

can be equal to M(K). 

Step 2: Fix arbitrary   
    , then deduce the first value 

of the optimal bandwidth;   
 . 

Step 3: Estimate f(0). 

Step 4: Approximate the different quantities:   
      ,  

  
    

 et   
     

 for each iteration k. 

Step 5: Estimate     
    . The value of   

   
 is so 

deducted from the kth iteration. 

Step 6: Approximate  
   . Stop the algorithm when the 

difference between   
   

 and   
     

 is relatively low 

(below 1%). 

3. Comparison Study between CART Models 

In the literature, numerous authors have compared the 

classifiers performance while they have ignored the 

stability criterion. Some classifiers are instable, small 

changes in their training sets or in constructions may 

cause large changes in their classification results. 

Therefore, an instable classifier may be too dependent 

on the specific data and has a large variance. Thereby, a 

good model should find a balanced equilibrium 

between the error rate bias and variance. These two 

later terms present the first and second order 

statistical moments of the classifiers error rates values. 

Therefore, these two low order moments do not enable 

to describe completely the statistical dispersions, 

especially for complex situations as the multimodal 

conditional error rates distributions. In order to 

analyze and compare the stability and performance of 

each classifier, we have to illustrate their error rate 

probability densities in the same figure. While the 

probability density curve on the left has the small 

mean, the one on the right has the high mean. Clearly, 

the classifier, whose curve is on the left, is the most 

efficient one. An instable classifier is characterized by a 

high variance. When the variance is large, the curve is 

short and wide, and when the variance is small, the 

curve is tall and narrow. As a result, the classifier with 

the largest density curve is the least stable one. This 

criterion is basic for any stability and performance 

analysis of each classifier. 

3.1 The stability criterion 

The first step before comparing is to train the different 

classifiers, and then we proceed by measuring their 

prediction results for N independent test sets. Suppose 

that (Xi)1≤i≤N  are the N generated error rates resulting 

from testing a particular classifier (such as Bayes, CART 

or ANN). These misclassification rates (MCR) are 

viewed as random variables and are supposed to be 

independent and identically distributed. They are also 

considered to have the same probability density 

function (pdf). Letting fX denotes this pdf. Such pdf is 

estimated by applying the Plug-in kernel algorithm, 

which optimizes the mean integrated square error 

criterion to search the best estimator smoothing 

parameter.  

In practice, the observed misclassification rates are real 

positive values. Thus, using the classical kernel density 

estimator may cause some convergence problems at 

the edges: the Gibbs phenomenon. The use of the 

kernel diffeomrphism plug-in algorithm presents the 

alternative solution. 

3.2 Stability evaluation by simulations 

The stability comparison between the CART models is 

performed by stochastic simulations. For this purpose, 

we have considered a binary classification problem 

adapted to a mixture of two different Gaussian 

distributions.  

For the training phase, we have generated one set 

including 1000 samples for each class. By using this 

training set, we look for fixing the optimal CART 

models parameters. 

For the test phase and in order to analyse the classifiers 

stability, we have generated 100 supervised and 

independent test sets having the same size of the 

training one (including 1000 samples for each class). 

Then a set of 100 error rates are retained for each 

classifier. Their probability densities are estimated 

using the diffeomorphism-kernel Plug-in algorithm 

reviewed in the previous section. 

Table 1 enumerates the distributions parameters 

corresponding to the different illustrations of figure 1. 

These simulations present six mixtures of two 

Gaussians in spaces of dimensions 3 and 10, 

respectively. The two cases ‘a’ and ‘d’ illustrate 

Homoscedastic Gaussians. The other cases present 

heteroscedastic ones; cases ‘b’ and ‘f’ treat the problem 

of the two superposed Gaussians having the same 
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means, vector and different covariance matrices. Case 

‘c’ shows the problem of the two truncated Gaussians. 

In this situation, the second samples cloud surrounds 

the first one in a ball centred at the origin.  

In figure 1, we try to compare the different models of 

the CART decision trees; conventional CART, CART-

Bagging and CART-Adaboost.  

The density of the CART error rates is illustrated by the 

curve furthest to the right (having the largest error 

rates mean) and the wider (with the largest error rates 

variance). Thus, CART is the least efficient and least 

stable decision tree for the six simulations. 

In table 2, the three CART decision tree models, are 

moreover analysed by presenting their error rates 

biases and variances. 

The results show that the optimization procedures for 

the CART decision trees (Bagging and Adaboost 

algorithms) improve their performance and stability. 

Although, the Adaboost training algorithm gives better 

results than the Bagging technique and conventional 

CART. 

Table 1: Distributions Parameters 

 Gaussian 1 Gaussian 2 

μ1 ∑1 μ2 ∑2 

3 

di

m 

a (1,1,1) I3 (1.5,1.5,1.5) I3 

b (1.5,2,-3) 0.5xI3 (1.5,2,-3) 2xI3 

c (0,0,0) [0.06  0.01  

0.01] x I3 

(0.1,0.1,0.1) [0.01  0.06  

0.05 ] x I3 

10 

di

m 

d (1.5,..,1.5)10 I10 (2,..,2) 10 I10 

e (0,..,0) 10 2xI10 (2,..,2) 10 3x I10 

f (0,..,0) 10 I10 (0,..,0) 10 2x I10 

 

Figure 1: Error rates densities of CART (-), CART-Bagging (--) 

and CART-Adaboost (..), of the various simulations of table 1. 

Table 2: Comparison results of CART models. 

Ca

se

s 

CART CART-Bagging CART-Adaboost 

Mean 
Variance 

x10-4 
Mean 

Varianc

e  x10-4 
Mean 

Variance  

x10-4 

a 0.4166 1.9931 0.3921 1.6294 0.2727 0.6715 

b 0.2744 1.7386 0.1927 1.5289 0.1260 1.0595 

c 0.2410 1.4345 0.1730 1.4711 0.0729 0.6412 

d 0.2727 1.2285 0.2478 1.2278 0.1922 0.7202 

e 0.5406 1.3074 0.5373 1.2651 0.5396 0.8698 

f 0.4688 2.2906 0.4303 2.2108 0.2541 1.8215 

4. APPLICATION TO HANDWRITTEN DIGIT 

RECOGNITION PROBLEM 

In order to compare the classifiers stability and 

performance, we refer in the present section to the 

handwritten digit recognition problem. This task is still 

one of the most important topics in the automatic 

sorting of postal mails and checks registration. The 

database used to train and test the different classifiers 

described in this paper was selected from the publicly 

available MNIST database of handwritten digits [17]. 

This database contains 60,000 training images and 

10,000 test ones. For the training and test sets, we 

randomly select, from the MNIST training and test sets 

respectively, single digit images. Both sets contain 1000 

images for the 10 digit classes (10,000 for both sets).  

4.1 Features extraction 

The most delicate step in handwritten digits 

recognition problem is the invariant feature extraction. 

The selection of the appropriate primitives must be 

based on a set of non-exhaustive criteria. This choice 

will affect the calculation speed, the discrimination 

efficiency, the invariability to the geometric 

transformations, the completeness and the stability. In 

the literature, researchers often try to fulfil only the 

first two criteria which are not really sufficient for 

handwritten digits recognition which have planar 

shapes summarizing their contours.  

The Fourier descriptors are invariant description forms 

and were presented in many analytical works on 

pattern recognition, such as handwriting recognition 

[27, 37]. However, researchers have shown that the 

Fourier descriptors of the parameterized function do 

not contain sufficient information to characterize the 

shape of an object. Therefore, the completeness 

criterion was introduced by Crimmins, ensuring the 

reconstruction of the image from its invariant features. 

All Crimmins descriptors have a complete set of 

Fourier descriptors for planar shapes, in the sense that 

two objects having the same shape, if and only if they 

have the same set of Fourier descriptors. However, the 

completeness property is purely algebric and does not 

take into account the similarity between the objects 

observed in their natural scene. 

 Based on the concept of the Fourier transform in a 

locally compact separable group Ghorbel introduced 

[11], a family of complete and stable invariant features 

with respect to the starting point on the curve and 

compared with direct similarities groups within the 
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forms in summarizing their contours. This stability 

property provides some robustness to numerical 

calculation errors and distortion introduced by certain 

measures (bad acquisition, scanning, quantification ...).  

In this manuscript, we will compare the Fourier and 

Ghorbel descriptors for handwritten digits recognition. 

Thus, we calculate the Fourier coefficients from the 

handwritten digits contours. The experiments show 

that the first 14 Fourier coefficients are sufficient.  

4.2 Stability evaluation 

The experiments of the previous section have already 

showed that the Adaboost training algorithm gives 

better results than the Bagging technique and 

conventional CART. For these reasons, we apt for the 

use of CART-Adaboost for the next studies in our paper. 

Thus, we try to compare CART-Adaboost with the 

Bayesian classifier and ANN of type Bayesian neural 

network. 

The selected descriptors size is high (D = 14). In order 

to apply Bayesian rule, dimension reduction becomes 

necessary. The transformation matrix is estimated for 

the Fisher LDA from the training set, which projects the 

data on the appropriate dimensions subspace (two 

dimensions in our study). In order to compare the 

classifiers stability, we evaluate their performance for 

100 times using the 10-folds cross validation (CV) 

algorithm. Their misclassification rates (MCR) are 

calculated on the test sets selected by the CV algorithm 

from the MNIST test set (N=1000 images for each 

class). 

In order to obtain meaningful comparison between the 

different types of classifiers, we evaluate their 

performance and stability degrees. Figure 2, 3 and 4 

show the error rate probability densities estimated 

using the diffeomorphism-kernel semi-bounded Plug-in 

algorithm. This procedure is qualified by its sufficient 

precision on the stability aspects.  

In figure 2, two digits yield the binary classification 

problem of the digits 2-5, 4-7 and 6-9. Figure 3 results 

the problem of classifying 4 digits; 1-2-3-4 and 5-6-7-8. 

In figure 4, the 10 digits are classified by both Fourier 

descriptors and Ghorbel descriptors. In table 3 and 4, 

we summarize the MCR means and variances obtained 

for the two types of descriptors using the three 

classifiers for Fourier descriptors and Ghorbel 

descriptors, respectively.  

The experimental results of classifying neural and 

statistical classifiers on the MNIST database, can 

concretely resume for two points. First, CART is the 

best classifier for binary cases; however ANN is the 

best one in multiclass cases. Second, the Ghorbel 

descriptors are significantly more stable than the 

Fourier descriptors. 

5. CONCLUSIONS 

In the current research, a stability comparison analysis 
involving artificial neural networks, Bayesian decision 
theory and CART decision trees are performed. In 
addition to the prediction accuracy, a new stability 
criterion is applied based on the classifiers error rates 
probability based on densities estimation. The 
proposed variant of the semi-bounded 
diffeomorphism-kernel plug-in algorithm provides a 
significant precision for the densities estimations 
which are characterized by their semi-infinity support. 

We have compared the stability and the performance of 
the statistical and the neural approaches using 
simulated data from Gaussian distributions and real-
world data (handwritten digits images). The stochastic 
simulations demonstrated the superiority of the 
statistical classifiers in their performance and stability. 
By applying the handwritten digits recognition 
problem, we have proven the performance of ANNs. In 
addition, the classifiers combination and the Bayesian 
approach for modeling NNs enhance their performance 
and stability. Similarly, the Bagging and Adaboost 
procedures improve the CART model efficiency. 

 

Figure 2:  Error rate densities for Fourier descriptors and 
Ghorbel descriptors for the two digits classes: 2 & 5, 4 & 7, and 
6 & 9. 

 

Figure 3:  Error rate densities for Fourier descriptors (in the 
left) and Ghorbel descriptors (in the right) for the four digits 
classes: 1, 2, 3 & 4, and 5, 6, 7 & 8. 
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Figure 4:  Error rate densities for Fourier descriptors (in the 
left) and Ghorbel descriptors (in the right) for the ten digits 
classes. 

Table 3: Comparison results of neural and statistical classifiers 
on the MNIST database for Fourier descriptors.  

Digit classes 
Bayes CART ANN 

Mean Var x10-4 Mean Varx10-4 Mean Var x10-4 

2-5 0.3498 9.0777 0.1340 4.0354 0.1260 5.3232 

4-7 0.2596 10 0.1000 4.1111 0.3285 11 

6-9 0.3393 10 0.1165 4.8056 0.1195 4.1641 

0-1-2-3 0.2116 4.6760 0.0932 2.0082 0.0560 1.2184 

4-5-6-7 0.5252 6.9183 0.2497 3.9994 0.1468 3.6016 

0..9 0.3167 1.5782 0.2779 1.8583 0.2787 1.7443 

Table 4: Comparison results of neural and statistical classifiers 
on the MNIST database for Ghorbel descriptors.  

Digit 

classes 

Bayes CART ANN 

Mean Var x10-4 Mean Var x10-4 Mean Var x10-4 

2-5 0.3490 8.8772 0.1340 4.5202 0.4040 12 

4-7 0.2591 8.5035 0.1000 2.8990 0.3030 7.8485 

6-9 0.3418 11 0.1165 4.4975 0.1255 6.1187 

0-1-2-3 0.2109 4.6713 0.0933 1.8920 0.0528 1.0979 

4-5-6-7 0.5230 4.7403 0.2497 4.6383 0.1497 2.7279 

0..9 0.3170 1.9796 0.2779 1.5415 0.2716 1.6939 

This study has provided a new conception to compare 

the ANNs stability results and other classifiers types 

such as Support Vectors Machine (SVM). 
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