
International Journal of Innovative Studies in Sciences and Engineering Technology 

(IJISSET) 

ISSN 2455-4863 (Online)                     www.ijisset.org              Volume: 3 Issue: 1 | January 2017

 

© 2017, IJISSET                                                                          Page 20 

Analysis of a Stochastic Predator-Prey Model with Crowley-Martin 

Functional Response 

Jiajia Wei, Xiaoping Li* 

Science College, Hunan Agriculture University, Changsha, 410128,PR. China 

*Corresponding author

 

Abstract: In this paper, we consider a density 

dependent predator-prey stochastic model with 

Crowley-Martin functional responses. For the stochastic 

systems, we discuss the existence of the globally positive 

solutions and also show that the solution of the 

stochastic systems will be stochastically ultimately 

bounded.  
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1. INTRODUCTION 

For the last decades, many predator-prey models have 

been studied extensively. Many excellent results are 

obtained. In the predator-prey interaction, the 

functional response plays an important role in the 

population dynamics. Functional responses are of 

several types: HollingI-III, Ratio Dependent, 

Beddington-DeAngelis, Crowley-Martin, Leslie-Gower 

(one can see [1-6] and references cited therein). 

Recently, Jai Prakash Tripathi et al. [7] introduced the 

following predator-prey model with Crowley-Martin 

Functional responses 
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where all parameters are positive, 1( )x t
 

and 2( )x t
 

denote respectively the densities of prey and predator 

species at time. .t  a  is the  intrinsic growth rate of 

prey species, d is the death rate of predator species, 

the biological meaning of all other parameters can be 

found in [8-10]. Then the authors discussed the 

existence conditions of the positive equilibrium, 

persistence and global stability of coexistence 

equilibrium. 

On the other hand, in the world, population systems are 

often perturbed by various types of environmental 

noises (see e.g.[11-14]). Mao [15] pointed out that due 

to environmental fluctuation, the birth rate, carrying 

capacity, competition coefficients and other parameters 

involved with the system exhibit random fluctuation to a 

greater or lesser extent (see e.g.[16]-[22]).  

Taking into account the effect of environmental noise, 

we assume that the environmental noise affects mainly 

the intrinsic growth rate a  and the death rate d  

with 

1 1 2 2( ), ( )a a dB t d d dB t     , 

where 
2

i  denotes the intensity of the noise 

and ( )iB t  is a standard white noise, namely ( )iB t is a 

standard Brownian motion defined on a complete 

probability space 0( , ,{ } , )t tF F P  with a filtration 

0{ }t tF   satisfying the usual conditions. Then 

corresponding to system (1.1), stochastic predator-prey 

model with Crowley-Martin Functional response can be 

expressed as follows 
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where all parameters are positive, 1( )x t
 

and 2( )x t
 

denote respectively the densities of prey and predator 

species at time .t  

In this paper, we first investigate the existence and 

uniqueness of positive solution, and then, we discuss 

the stochastically ultimate boundedness of positive 

solutions. 

Throughout this paper, we denote by 
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2 2{( , ) , 0, 0}R x y R x y     and assume that 

solution of system (1.2) satisfy the initial conditions  

1(0) 0x  , 2(0) 0x  .                       (1.3) 

2. PRELIMINARIES 

In this section, we introduce some lemmas which will be 

useful in the following. 

Definition2.1 The solutions of the system (1.2) are 

called stochastically ultimately bounded, if for 

any )1,0( , there exist a constant 0   such that 

the solution of system (1.2) with any positive initial 

value has the property that  
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Lemma 3.1
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 (Chebyshev’s inequality ) For 
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Lemma 3.2
[24]

 Let ( )x t is the solution of the 

n -dimensional stochastic differential Equation 

( ) ( ( ), ) ( ( ), ) ( )dx t f x t t dt g x t t dB t  , for 0.t t  

( , )V x t defined on 0[ , )dR t  such that they are 

continuously twice differentiable in x and t ,then 
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3. MAIN RESULTS 

Theorem 2.1 For any given initial condition (1.3), the 

system (1.2) has a unique solution ))(),(()( 21 txtxtx   

on t R  and the solution will remain in 
2R

 with 

probability one. 

Proof It is easy to see that the coefficients of system 

(1.2) satisfy the local Lipschitz condition. Then there 

exists a unique local solution ))(),(()( 21 txtxtx   of 

system (1.2) on [0, ]e ,where e  is the explosion 

time, so we only need to show that e   a.s. 

Choosing 0m sufficiently large such that  

0

0

1
(0) [ , ], 1,2ix m i

m
  . 

For each integer 0m m , we define the stopping time 

1 2inf{ (0, ) : ( ) (1 , ) or ( ) (1 , )}m et x t m m x t m m     . 

It is easy to see that m  is increasing as m , 

set lim m
m

 


 ,obviously, e    a.s.. If we can 

show that    a.s., then e   a.s. By reduction 

to absurdity, assumes that   , then there exist 

constants 0T  and (0,1)   such that 

{ }P T    . 

So, there exist an integer 1 0m m  such that 

{ }mP T   , for 1m m .                (2.1) 

Define 

1 2 1 1 2 2( , ) ( 1 ln ) ( 1 ln )V x x x x x x      . 

For
2

1 2( , )x x R , it is easy to verify that 1 2( , ) 0V x x  , 

Applying ˆIto s  formula to system (1.2), we have 
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Form (2.2), (2.3) and (2.4), we get 
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It is easy to see that there exist a constant 0M   
such that  
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Therefore, we have  

1 1 1 2 2 2+ ( 1) ( ) ( 1) ( )dV Mdt x dB t x dB t           (2.5) 

Integrating both sides of the above inequality from 0 

to m T   and then taking the expectations leads to 
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to the contradiction  
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So, we have    a.s.. The proof of Theorem 2.1 is 

completed.  

Theorem 3.2 the solutions of the system (1.2) are 

stochastically ultimately bounded 

Proof Applying ˆIto s  formula to system (1.2), we 

have 
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Integrating both sides of (3.2) from 0 to t  and then 

taking the expectations leads to 
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solution of (3.7), where 
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as required. 
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