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Abstract: In this paper, based on the target-aspect 

sensitivity of target HRRP and the sparse representation 

method (SR), we propose an improved radar high 

resolution range profile (HRRP) recognition algorithm, 

called asymmetrical segment weighted sparse 

representation (ASWSR). The main innovation of ASWSR 

lies in using the constant false alarm rate (CFAR) trick to 

segment the HRRP into three parts, and then calculate 

the weight of each part based on the length and the 

power in each districts. Performing the SR method on 

each sub-HRRPs, getting the sparse coefficients of each 

parts, extracting the main target information part in 

HRRP respectively. Finally, use the weights to weight the 

reconstruction error of corresponding part and by 

searching the least reconstruction error to give out the 

target recognition result. Experiment results 

demonstrate the effectiveness of our proposed method. 

Keywords: Sparse representation, High resolution 
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1. INTRODUCTION 

Radar HRRP recognition in the military applications is 

of important significance. So far, an enormous volume 

of literature has been devoted to investigate various 

radar target recognition methods, these methods can 

be roughly divide into three categories: the range 

profile based, especially the HRRP based; the synthetic 

aperture radar (SAR) image based and the signal 

feature based. When using the HRRP to recognize 

target, there are three challenges: the target-aspect 

sensitivity, the time-shift sensitivity and the amplitude-

scale sensitivity. The scattering center model [1], 

coherent averaging [2], Bayesian Gmma model [3] and 

HMM model [4] have been well studied to surmount 

the target-aspect sensitivity. For the time-shift 

sensitivity, the HRRP-based statistical model, the 

higher order spectra and the invariant feature are 

given in [5]-[7]. Du et al. use l2 normalization of HRRP 

to overcome the amplitude-scale sensitivity [5]. 

Recently, some new methods integrating with the 

theory of SR has been proposed, Wright et al. first 

introduced the SR method into face recognition and it 

shown state-of-art performance [8]. SR seeks a linear 

representation, with smallest number of no-zero 

elements, of the test sample in terms of the over 

complete dictionary and then be recovered efficiently 

via l1-minimization. The SR method assigns the class 

label of test sample to the class, which has the least 

representation error, directly. So the SR can be view as 

a learning machine in which the classification process 

is accomplish by using reconstruction methods. For 

radar target recognition, Dong et al. proposed the joint 

sparse representation for target recognition [9] and 

Wang et al. introduced the modified SR and manifold 

learning methods to the HRRP target recognition [10], 

both achieved a certain success. 

In this paper, we propose a modified SR method to 

recognize the radar target HRRPs, called ASWSR. Based 

on the length and power in the different parts of HRRP, 

we assign different weights in the dictionary and then a 

modified SR method is used to accomplish the target 

classification. Experiments are executed to test the 

performance of proposed method and results show 

that our method obtains the best performance on the 

HRRP dataset. 

2. THE REVIEW OF TARGET-ASPECT 

SENSITIVITY AND SPARSE REPRESENTATION 

In this section, the target-aspect sensitivity and the 

basic theory of sparse representation are provided. 

2.1 Target-aspect Sensitivity 

According to the geometry and structure 

characteristics of three real military targets: infantry 

fighting vehicle (IFV) BMP2, armored fighting vehicle 

(AFV) T72 and tank BTR70, we use the method 

proposed in [1] to build their scattering centre models 

and get the simulated HRRPs. The phenomenon of the 

target-aspect sensitivity is shown in fig 1. It shows that 

the slight variation of target-aspect (the azimuth angle 

between the target and radar) will cause HRRP 

conspicuous change. 
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2.2 Sparse Representation 

 

Fig 1: HRRP of an aircraft, which containing the target 

structure signatures, such as the target size, the scatter 

distribution, changing along with the radar line of sight (RLOS) 

SR is a task of reconstructing a signal by selecting a 

fewest bases from the over complete dictionary and 

keeping the reconstruction error as little as possible 

[11]. Given a training dictionary of n samples 
              ,       , for a sample     , the 

objective function of SR is use the smallest number of 

nonzero coefficients in α to accomplish the optimal 

approximation     . The recent development of 

compressed sensing [12] shows that if the 

representation is sparse enough, the minimal solution 

problem is equivalent to solution of the following l1-

norm minimization problem. 

 1
ˆ argmin . .s t y X


         (1) 

When noise is included in sample y, a perfect 

reconstruction is typically not feasible. Therefore, we 

give the sparse reconstruction an error tolerance ε>0. 

 1
ˆ arg min . .s t y X


          (2) 

Normally, the Eq. (2) is approximated by loosening the 

error constraints and including a regularization term as 

follows 

 
2

2 1
ˆ ˆarg min{ }y X


       (3) 

where γ is a weighting constant, it gives a tradeoff 

between the reconstruction error and the sparsity of α. 

The objective function of recognition is to find the 

smallest error among all classes, given by 

 
21,2,...,

ˆ( ) arg min i i

i c
identity y y X 


    (4) 

where   and    is the training samples and coding 

vector associated with the i-th class. c is the total class 

number. 

3. THE PROPOSED METHOD 

In this section, we first give the asymmetrical segment 

of HRRP and then we present the proposed method and 

its steps in detail. 

3.1 The Asymmetrical Segment of HRRP 

Taking the BMP2 for example as demonstrated in the 

fig 2. We find that the useful target information, P2 

district in the figure, is just occupy a fraction among the 

whole HRRP and the other districts are useless or less 

useful. It's obviously unreasonable, if we given the 

same weight to each feature in the dictionary of SR 

method. 

 

Fig 2: HRRP of BMP2 with the azimuth 0°and 60° 

We preprocess the original HRRP with l2-normalization 

and use the constant false-alarm rate (CFAR) detector 

to pick out the target district P2, in which the really 

useful target information is mainly contained, so the 

HRRP is divided into three districts: P1, P2 and P3. 

Considering the target-aspect sensitivity, the length of 

P2 district is changing along with the azimuth, the 

average length of each part is used, the weights 

calculated for each part is defined in Eq. (5). 

 ˆ   1,2,3.
iP i i

i

P P i       (5) 

Perform the normalization to Eq. (5). 

 
2ˆ ˆ

i i iP P P

i

     (6) 

If the lengths of the three districts are equal, the 

weights of three parts are the same. In order to reflect 

the completeness of the proposed method and improve 

recognition accuracy of the three kinds of targets, we 

continue to add the following weight constraints. 

 
2 2

iS j j j i

j i j

x x x S        (7) 

where xj is the j-th feature value of HRRP, Si is the 

feature value set in district Pi. The final weight is 

defined in Eq. (8). 

 
2( ) 1,2,3.

i i i ii S P S P

i

i           (8) 
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3.2 The Asymmetrical Segment Weighted SR 

As discussed in Section 3.1, the useful target 

information is just occupies a fraction of HRRP, it is 

improper to utilize the holistic HRRPs to compose the 

overcomplete dictionary. We introduce the weight into 

the sparse representation to reconstruct a modified 

overcomplete dictionary. Each district of training 

samples and test sample are weighted by 

corresponding weights value to generate a weighted 

dictionary and a weighted sample.  

 
P ii

S

i PX X  (9) 

 
P ii

S

i Py y  (10) 

Then join the sub-dictionary together in turn to 

compose the weighted dictionary and weighted test 

sample. 

 
1 2 3

[ , , ]C S S S

P P PX X X X  (11) 

 
1 1 1

[ , , ]C S S S

P P Py y y y  (12) 

It is obvious to see that measure matrix XC is affected by 

ωi, we also assume that test sample yC can be written as 

a linear combination of the XC and define it as 

 
C C Cy X     (13) 

where 2
  , similar to Eq. (3), the sparse coefficient 

vector αC is obtained by solving the following 

minimization problem 

 
2

12
arg min{ }C C Cy X


       (14) 

Generally, we know that if the important part in the 

HRRP is not well represented, the reconstruction error 

will be larger and the classification rate will be lower. 

From the definition of ωi, we can find that the weight 

assigned to the district which contains the target useful 

information is the largest. That is to say, the target 

useful information district in HRRP is heavily weighted 

and the other districts are lightly weighted, this is 

helpful to well represent the test samples and 

reconstruct them, more accurately, with smaller errors. 

After the sparse coefficient vector αC is obtained 

through the dictionary learning, the classification result 

is given by finding the smallest reconstruction error of 

all classes as defined in Eq. (4). Following the above 

procedure, the modified SR algorithm is summarized in 

Table 1 in brevity, we named it ASWSR. 

The proposed ASWSR is specific applied in the field of 

radar HRRP targets recognition, as the problems of 

target-aspect, time-shift and amplitude sensitivities 

may mislead the result of classification or recognition. 

On the basis of SR, the useful information in the 

dictionary is heavily weighted, the less useful 

information is lightly weighted, which leads to smaller 

reconstruction error and better performance. 

Table 1: ASWSR algorithm 

Input: Training set X and testing sample y with column l1-

normalized. 

1: segment the HRRP of each class into three sub-HRRPs 

(
1 2 3
, ,P P PX X X ) using the CFAR detector. 

2: Calculate the weight ωi using Eq. (1) - (4). 

3: Reconstruct the weighted over complete dictionary XC 

and the test sample yC by Eq. (9)- (12). 

4: Solve l1-norm optimization problem in Eq. (14), obtain 

the sparse coefficient vector αC. 

Output: 
2

( ) arg min 1,2,..., 
i

C C

i
i

identity y y X i C   . 

4. EXPERIMENT 

4.1 Experiment Setup 

In this section, we carry out the classification 

experiments on the simulated millimeter wave radar 

HRRPs, the experiment environment is setting as 

follows. The corner reflectors with different positions 

and radar cross sections (RCS) are used to simulate the 

three targets. The stepped frequency wave (SFW) is 

used to detect the target with the range resolution 

0.293m and 256 range cells in each HRRP sample. For 

each target, we obtain 360 HRRPs with azimuth from 0

° to 179.5° at interval 0.5° , each range cell 

corresponding to one feature. It means that each HRRP 

has 256 features or dimension and the total number of 

HRRP samples of three targets are 1080. In the 

experiments, we compare the proposed method with 

the related methods MCC-TMM [6], K-NN and the SR 

[11] to demonstrate the effectiveness of the proposed 

method. TMM is a fundamental method in HRRP 

recognition, the label of the test sample is determined 

by the matching scores between test sample and the 

templates. Here we use TMM under the maximum 

correlation coefficient (MCC-TMM), in which the 

matching score is decided by the correlation coefficient 

between test sample and templates. In traditional SR, 

the training samples are used in the dictionary to 

sparsely represent the test sample and the sparse 

coefficient is used to reconstruct the label of the test 

sample. 

4.2 Experiment Result and Analysis 

Firstly, we give out the segment by the CFAR detector 

and corresponding weights for the three kinds of 
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HRRPs in fig 3. We can see the useful district in HRRP is 

heavily weighted while the less useful districts are 

lightly weighted. The length of target districts are 

different, it corresponds to the projection length of the 

target on the RLOS. 

 

Fig 3: The segmental weight coefficient of the three class 

targets (with the SNR=10dB in the HRRP) 

Secondly, we perform the experiments use the HRRP 

samples without noise. Choose k (k=15,18,21,…,120) 

samples from all the 1080 samples as the training set 

and k=120 samples from the rest samples as the testing 

set randomly. For MCC-TMM, the 5 nearest azimuth are 

averaged as the template. Each test performs 20 times, 

taking the average result as the final result. The 

average recognition rate against the number of training 

set is shown in fig 4. Table 2 gives the average 

recognition and standard deviation when training set 

k=120. 

 

Fig 4: Average recognition rate of four methods 

It easy to see that the performance of ASWSR is the 

best, the K-NN is the worst. The average recognition 

rate of ASWSR is nearly 2.5 percentage points higher 

than the MCC-TMM and 1.5 percentage points higher 

than SR. Simultaneously, stand deviations of ASWSR is 

the smallest. The performance tend to stable when the 

training set reach a certain number except the K-NN. As 

MCC-TMM is template based, when the training set 

small, the result is pretty bad. When training samples 

increase to a certain number, the recognition 

performance rapidly improving and then stabilizing. 

After analyzing ASWSR algorithm, we can get the 

conclusions that the using of asymmetrical segment 

weight, which gives a high weight to the useful district 

of HRRP in the dictionary of SR, leads to the higher 

recognition rate than SR. 

Tabel 2: Average recognition rate and stand deviations 

 MCC-TMM K-NN SR ASWSR 

mean 90.69 85.19 91.73 93.25 

std 1.07 1.65 0.99 0.78 

Finally, according to the analysis in Section 1, there 

always exists noise in HRRPs. We add noise into 

HRRPs, so as to be close to the true target environment. 

Setting the training set k=120 and the recognition rate 

curve versus the SNR is shown in fig 5. 

 

Fig 5: Average recognition rate with different SNR 

Fig 5 shows the performance of all the methods 

improves along with the increasing of the SNR. The SR 

and ASWSR are more robust than the other two, as 

introducing the error tolerance ε during the 

optimization in Eq. (6). The average accuracy of ASWSR 

is the highest under all the test SNR conditions. 

5. CONCLUSION 

In this paper, we proposed a modified sparse 

representation methods, named ASWSR, to accomplish 

the recognition of three different targets using their 

HRRPs. In the dictionary of ASWSR, we give a large 

weight to the useful district and a light weight to the 

less useful district. Then, through solving the l1-norm 

optimization problem get the best sparse coefficients to 
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accomplish the classification task. Experiments show 

that our method yields a better performance than the 

other algorithms. 
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