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Abstract:- In this paper, a dissipative wave equation 

was solved by quadratic non-polynomial spline function 

at middles between grid points in space and finite 

difference discretization in time direction. The stability 

analysis is theoretically discussed using von Neumann 

method, the proposed method is shown to be 

conditionally stable. The accuracy of the proposed 

method is demonstrated by a numerical example. 

numerical results coupled with graphical representation 

explicitly reveal the complete reliability of the proposed 

algorithm. 
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1. INTRODUCTION 

In the last few years, considerable interest was paid to 

using non-polynomial spline functions for 

approximating the solution of partial differential 

equations [1-3].we shall consider a numerical solution 

of the following dissipative wave equation [4] 
∂2u

∂t2 −
∂2u

∂x2 + 2ut u = g x, t                                       (1) 

Over a region  Ω =  a ≤ x ≤ b ×  t ≥ 0   , with initial 

conditions 

u x, 0 = f1 x  , ut  x, 0 = f2 x       (2) 

And boundary conditions  

 u a, t = ψ1 t  , u b, t = ψ2 t       (3) 

The functions f1 x  and f2 x  and their derivatives are 
continuous functions of  x,alsoψ1 t , ψ2 t  and their 
derivatives are continuous functions of  t . In this paper, 
we develop a quadratic non-polynomial spline to get a 
smooth approximations for the solution of the problem 
in Eq. (1) subjected to conditions in Eq. (2) and Eq. 
(3).This paper  is organized as follows: In section 2,a 
new method depends on the use of the non-polynomial 
splines is derived. In section 3, the stability analysis is 
theoretically discussed using Von Neumann method, 
for given values of specified parameters, the proposed 
method is shown to be conditionally stable. Finally, in 
section 4 ,a numerical example is included to illustrate 
the practical implementation of the proposed method. 

1.1. Derivation of the Method 

We create a grid with two mesh constants h and k,the 

grid points for this situation are  xi , tj wherexi = a +

ih  , i = 0, 1,… , n   and  tj = jk , j = 0,1,… . with x0 =

a , xn = b   and   h = (b − a)/n 

Where h and k are space step length, time step length, 

respectively. Let u xi , tj  be the exact solution of the 

system of Eq. (1),Eq.(2) and Eq. (3) and S xi , tj  be an 

approximation to the exact solution u(xi , tj) obtained 

by the spline function Qi x, tj passing through the 

points (xi , Si
j
) and (xi+1 , Si+1

j
).Each non-polynomial 

spline segment Qi x, tj  has the form Ramadan et al. [5] 

Qi x, tj = ai tj cos w x − xi +    bi tj sin w x −

xi+ citj                                                                       (4) 

Where i = 0,1,… , n − 1, j ≥ 0, x ϵ  xi , xi+1 , , ai(tj) , bi(tj) 

and ci  (tj) are constants and w is the frequency of the 

trigonometric functions which will be used to raise the 

accuracy of the method and Eq. (4) reduces to 

quadratic polynomial spline function in  a, b when 

w → 0, choosing the spline function in this form will 

enable us to generalize other existing methods by 

arbitrary choices of the parametersαand β which will 

be defined later at the end of this section. Thus, our 

quadratic non-polynomial spline is now defined by the 

relations: 

 i  S x, tj = Qi x, tj  , i = 0, 1, … , n − 1 , j ≥ 0 

 ii  S x, tj  ϵ C∞ a, b        (5) 

The three coefficients in Eq. (4) need to be obtained in 

terms of   

𝑆
𝑖+1

2 

𝑗
 ,𝐷𝑖

𝑗
𝑎𝑛𝑑𝑀

𝑖+1
2 

𝑗
  𝑤ℎ𝑒𝑟𝑒 i   Qi  xi+1

2 
, tj =

S
i+1

2 

j
 ,  ii   Qi

 1  xi , tj = Di
j
  , 

 iii  Qi
 2  xi+1

2 
, tj = M

i+1
2 

j
      (6)                              

We obtain via straightforward calculations from Eq.(4) 

and Eq. (6) 

ai tj = −
secθ 2 

w2
M

i+1
2 

j
−

tanθ 2 

w
Di

j
 

bi tj =
1

w
Di

j
,   ci tj = S

i+1
2 

j
−

1

w2 M
i+1

2 

j
                       (7) 

where θ = wh and i = 0, 1, 2, … , n − 1  

Now using the continuity conditions (ii) in Eq. (5), that 

is the continuity of quadratic non-polynomial spline 

S x, tj and its first derivative at the point(xi
j
, Si

j
), where 
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the two  Qi−1 x, tj  and Qi x, tj  join, we have 

Qi−1
 m 

 xi , tj = Qi
 m 

 xi , tj , m = 0,1 

Using Eq. (4) and Eq. (7) yield the relations: 

tan θ 2 

w
 Di

j
+  Di−1

j  =  S
i+1

2 

j
− S

i−1
2 

j   

+
1

w2
M

i+1
2 

j  1− sec θ 2   

+
1

w2 M
i−1

2 

j  −1 + cosθ sec θ 2                        (8)   

(Di
j
− Di−1

j
) =

2 sin θ 2 

w
 M

i−1
2 

j
      (9)  

From Eq. (8) and Eq. (9) we get the  relation: 

S
i−3

2 

j
− 2 S

i−1
2 

j
+  S

i+1
2 

j
= α(M

i−3
2 

j
+  M

i+1
2 

j
)                                     

+ β M
i−1

2 

j
, i = 2,3,… , n − 1    (10) 

Where: 

α = h2  
−1+sec θ 2 

θ2
    , β = h2  

4 sec θ 2 (sin θ 2 )2 +2(1−sec θ 2 )

θ2
  

Remark:- 

(i) When  α = h2/8  and β = 6h2/8  then the scheme 

(10) is reduced to quadratic polynomial spline in [6,7]. 

(ii) When  α = h2/24  and β = 22h2/24 then the 

scheme (10) is reduced to cubic polynomial spline in 

[8]. 

using the dissipative wave Eq. (1), we can 

write   M
i−3

2 

j
 , M

i−1
2 

j
 and  M

i+1
2 

j
in the form 

   M
i−3

2 

j
=
∂2S

i−3
2 

j

∂x2
=
∂2S

i−3
2 

j

∂t2
+ δ

i−3
2 

j
S

i−3
2 

j
− g

i−3
2 

j
 

   M
i−1

2 

j
=
∂2S

i−1
2 

j

∂x2
=
∂2S

i−1
2 

j

∂t2
 

+δ
i−1

2 

j
S

i−1
2 

j
− g

i−1
2 

j
 

M
i+1

2 

j
=

∂2S
i+1

2 

j

∂x2 =
∂2S

i+1
2 

j

∂t2 + δ
i+1

2 

j
S

i+1
2 

j
− g

i+1
2 

j
      (11) 

Where δi
j

= 2
∂Si

j

∂t
 ,We use the Taylor series in the 

variable t about tj  to generate the following centered 

difference formula  

∂2Si
j

∂t2
≈

Si
j+1

− 2Si
j

+ Si
j−1

k2
 

Where k = tj+1 − tj   and Si
j

= S xi , tj .The relations in 

Eq. (11) can be discretized in the form  

   M
i−3

2 

j
≈

S
i−3

2   

 j+1
− 2S

i−3
2   

 j
+ S

i−3
2   

 j−1

k2
+ δ

i−3
2 

j
S

i−3
2 

j

− g
i−3

2 

j
 

 M
i−1

2 

j
≈

S
i−1

2   

j+1
− 2S

i−1
2   

j
+ S

i−1
2   

j−1

k2
 

+δ
i−1

2 

j
S

i−1
2 

j
− g

i−1
2 

j
 

M
i+1

2 

j
≈

S
i +1

2   

j+1
−2S

i+1
2   

j
+S

i+1
2   

j−1

k2 + δ
i+1

2 

j
S

i+1
2 

j
− g

i+1
2 

j
(12) 

And  δi
j

= 2
∂Si

j

∂t
≅

2(Si
j
−Si

j−1
)

k
 

The use of Eq. (12) in Eq.(10) gives us the following 

system 

α(S
i−3

2   

j+1
+ S

i+1
2   

j+1
) + β  S

i−1
2   

j+1
  

= A S
i−3

2 

j
+ B S

i−1
2   

j
+ C S

i+1
2   

j
− α(S

i−3
2   

j−1
+ S

i+1
2   

j−1
)

− β  S
i−1

2   

j−1   

+k2  α g
i+1

2 

j
+ g

i−3
2 

j
 + βg

i−1
2 

j
      (13) 

for    i = 2,3,… , n − 1 and j ≥ 1                

Where A = k2 + 2α − αk2δ
i−3

2 

j
, 

 B = −2k2 + 2β − βk2δ
i−1

2 

j
 

, C = k2 + 2α − αk2δ
i+1

2 

j
 

and δi
j

= 2
∂Si

j

∂t
≅

2(Si
j
− Si

j−1
)

k
 

Eq. (13) consists of  n − 2  linear algebraic equations 

in the  n  unknowns   S
i+1

2 

j
 , i = 0, 1, 2,… , n − 1, so we 

need two more equations, one at each end of the range 

of integration for direct computation of  S
i+1

2 

j
 . These 

two equations are deduced by Taylor series and the 

method of undetermined coefficients. These equations 

are 

2 S0
j
− 3 S1

2 

j
+  S3

2 

j
 

= h2  w0  M1
2 

j
+ w1  M3

2 

j
+w2 M5

2 

j
+ w3  M7

2 

j  , i = 1

                                                       (14) 

2 Sn
j
− 3 S

n−1
2 

j
+  S

n−3
2 

j
=

 h2  
w0  M

n−1
2 

j

+w1  M
n−3

2 

j
+ w2  M

n−5
2 

j
+ w3 M

n−7
2 

j
 , i = n  

(15) 

Where wi′s will be determined later to get the required 

order of accuracy. using Eq.(12) in Eq. (14) and Eq.(15) 

gives us the following equations 

h2

k2
(w0S1

2 

j+1
+ w1  S3

2 

j+1
+ w2  S5

2 

j+1
+ w3  S7

2 

j+1
) 

= (−3 +
2h2w0

k2
− h2w0δ1

2 

j
 )S1

2 

j
 

+(1 +
2h2w1

k2
− h2w1δ3

2 

j
 )S3

2 

j
 

+(
2h2w2

k2
− h2w2δ5

2 

j
 )S5

2 

j
+ (

2h2w3

k2
− h2w3δ7

2 

j
 )S7

2 

j
 

−
h2

k2
(w0S1

2 

j−1
+ w1  S3

2 

j−1
+ w2 S5

2 

j−1
+ w3  S7

2 

j−1
) 
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+h2  w0g1
2 

j
+ w1g3

2 

j
+ w2g5

2 

j
+ w3g7

2 

j  + 2S0
j
 

(16) 

h2

k2
(w0S

n−1
2 

j+1
+ w1  S

n−3
2 

j+1
+ w2  S

n−5
2 

j+1
+ w3 S

n−7
2 

j+1
) 

= (−3 +
2h2w0

k2
− h2w0δn−1

2 

j
 )S

n−1
2 

j
 

+(1 +
2h2w1

k2
− h2w1δn−3

2 

j
 )S

n−3
2 

j
 

+(
2h2w2

k2
− h2w2δn−5

2 

j
 )S

n−5
2 

j
 

+(
2h2w3

k2
− h2w3δn−7

2 

j
 )S

n−7
2 

j
 

−
h2

k2
(w0S

n−1
2 

j−1
+ w1  S

n−3
2 

j−1
 

+w2  S
n−5

2 

j−1
+ w3  S

n−7
2 

j−1
 

+h2  w0g
n−1

2 

j
+ w1g

n−3
2 

j
+ w2g

n−5
2 

j
+ w3g

n−7
2 

j  +

2Sn
j

               (17) 

we can determine the values of wi
′s by expanding 

Eq.(14) andEq. (15) in terms of  

u0
j

  at i = 1 and   un
j

 at i = n 

ti
 j

= 2u0
j
− 3u1

2 

j
+ u3

2 

j

− h2  w0Dx
2 u1

2 

j
+ w1Dx

2  u3
2 

j

+ w2Dx
2 u5

2 

j
+ w3Dx

2  u7
2 

j
 , i = 1 

(18) 

And 

ti
 j

= 2un
j
− 3u

n−1
2 

j
+ u

n−3
2 

j
 

 −h2  w0Dx
2 u

n−1
2 

j
+ w1Dx

2  u
n−3

2 

j
+ w2Dx

2 u
n−5

2 

j
+

w3Dx2 un−72j,i=n     

(19)         

Then the truncation error at i = 1, n as the following  

ti
 j

=

 
 
 
 
 
 
 
 
 
  

6

8
−  w0 + w1 + w2 + w3  h2Dx

2 +

 
1

2
−  

w0+3w1+5w2+7w3

2
  h3Dx

3   + 

 
39

192
−  

w0+9w1+25w2+49w3

8
  h4Dx

4

+ 
1

16
−  

w0+27w1+125w2+343w3

48
  h5Dx

5 + 

 
726

46080
−  

w0+81w1+625w2+2401 w3

384
  h6Dx

6 + ⋯ 
 
 
 
 
 
 
 
 
 

ui
j

     (20) 

to maketi
 j
 , i = 1, n of order  O h6  we make the first 

four terms in Eq. (20) equal to zero, then we have 

 w0 , w1 , w2 , w3 = ( 233/384 , 63/384 ,−9/384 ,

1/384 ),The spline solution of Eq.(1) with initial 

condition in Eq.(2) and boundary condition in Eq. (3) is 

based on the Eq. (13) ,Eq.(16)and Eq. (17) . then we can 

write the standard matrix equations for the non-

polynomial spline method in the form 

Q S
i+1

2   

j+1
= Q∗ S

i+1
2   

j
− Q S

i+1
2   

j−1
+  R

i+1
2   

j
 

(21) 

for i = 0,1,… , n − 1 and j ≥ 1 

Where 
2 22 2

0 31 2

2 2 2 2

2 22 2

3 02 1

2 2 2 2

0

0

0

,

0

0

h w h wh w h w

k k k k

Q

h w h wh w h w

k k k k

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 
 
 

1 2 3 4

2 2 2

3 3 3

*

1 1 1

* * * *

4 3 2 1

0

0

0
n n n

q q q q

A B C

A B C

Q

A B C

q q q q

  

 

 

 

 

 

 

 

 

 

 

 

 
   

 S
i+1

2 

j
=   S1

2 

j
 S5

2 

j
 S7

2 

j
…  S

n−1
2 

j  
T

 

q1 = −3 +
2h2w0

k2
− h2w0δ1

2 

j
 

 q2 = 1 +
2h2w1

k2
− h2w1δ3

2 

j
, q3 =

2h2w2

k2
− h2w2δ5

2 

j
 

q4 =
2h2w3

k2
− h2w3δ7

2 

j
 

q1
∗ = −3 +

2h2w0

k2
− h2w0δn−1

2 

j
 

q2
∗ = 1 +

2h2w1

k2
− h2w1δn−3

2 

j
 

q3
∗ =

2h2w2

k2
− h2w2δn−5

2 

j
 

q4
∗ =

2h2w3

k2
− h2w3δn−7

2 

j
 

And 

 R
i+1

2   

j
= h2  w0g1

2 

j
+ w1g3

2 

j
+ w2g5

2 

j
+ w3g7

2 

j  

+ 2ψ1 tj  , i = 1 

 

k2   α  g
i−3

2 

j
+g

i+1
2 

j   + βg
i−1

2 

j  , i = 2,3,… , n − 1 

h2  w0g
n−1

2 

j
+ w1g

n−3
2 

j
+ w2g

n−5
2 

j
+ w3g

n−7
2 

j
  

+2ψ2 tj  , i = n 

Eq. (13) ,Eq.(16) and Eq. (17) imply that the ( j + 1)st 
time step requires values from the ( j )st and ( j − 1)st 
time steps where  j = 1,2,… ; since values for j = 0 are 
given by the first part in Eq. (3) which is 
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S
i+1

2   
0 = u xi+1

2 
 ,0  

= f1  xi+1
2 
 , i = 0,1,… , n − 1 

(22) 

So, it is necessary to know the approximate values 

of  u(x, t) at the nodal points of the first time level that 

is at   t = t1 = k  . A Taylor series expansion at  t = k 

may be written as  

S
i+1

2   
1 = S

i+1
2   

0 + k
∂S

i+1
2   

0

∂t
+

k2

2

∂2S
i+1

2   
0

∂t2
+ O(k3) 

(23)                               

 

using the initial values from Eq.(2) we calculate the 

following equations 

∂S
i+1

2   
0

∂t
= ut x, 0 = f2(xi+1

2 
) 

∂2S
i+1

2   
0

∂t2
=
∂2S

i+1
2  

0

∂x2
− 2ut  xi+1

2 
, 0 u  xi+1

2 
, 0  

+g  xi+1
2 

, 0 =
d2

dx2
f2  xi+1

2 
  

−2ut  xi+1
2 
, 0 u  xi+1

2 
, 0 + g xi+1

2 
, 0  

(24) 

Substituting from Eq. (22) and Eq. (24) into Eq. (23) 

,we get 

S
i+1

2   
1 = f1  xi+1

2 
 + k f2  xi+1

2 
  

+ 
k2

2
 
g  xi+1

2 
, 0 +

d2

dx2 f1  xi+1
2 
 

−2f1  xi+1
2 
 f2  xi+1

2 
 

 , i = 0,1,…n − 1 

                  (25) 

2. STABILITY ANALYSIS 

The stability of the spline method can be investigated 

according to the Von Neumann method in [9].then 

taking δi+1 , δiandδi−1as a local constant d∗ .We assume 

the solution of the difference Eq. (13) at the mesh 

points (i, j) can be expressed into Fourier mode in its 

complex exponential form as 

Si
j

= ξj exp I∅ih       (26) 

Where is ∅ the wave number, I =  −1, h is the element 

size and ξj  is the amplification factor at time level j.for 

stability, we must have  ξj ≤ 1(otherwise ξjin would 

grow unbounded) substituting Eq.(26) into Eq. (13),we 

obtain the following form 

ξj+1   α  exp  I∅ i −
3

2
 h + exp  I∅ i +

1

2
 h  

+ βexp  I∅  i −
1

2
 h   

= ξj

 
 
 

 
 

 k2 + 2α − αk2d∗ 

×  exp  I∅ i −
3

2
 h + exp  I∅ i +

1

2
 h  

+(−2k2 + 2β − βk2d∗)exp  I∅ i −
1

2
 h  

 
 

 
 

 

−ξj−1

 
 
 

 
 
α  

exp  I∅ i −
3

2
 h 

+exp  I∅ i +
1

2
 h 

 

+β exp  I∅ i −
1

2
 h  

 
 

 
 

  

(27) 

Dividing both sides  of the last equation by 

 exp  I∅ i −
1

2
 h  ,then cancelling the common term 

that is ξj−1  α  
exp  I∅ i −

3

2
 h +

exp  I∅ i +
1

2
 h 

 + β  ,we obtain 

ξ2 + 2μ ξ + 1 = 0  

(28) 

Where  

μ =
2 α2k2d∗ − k2 cosφ+  βk2d∗ + 2k2 

2(αcosφ+ β)
− 1, 

and φ = ϕh 

Or  

μ =
k2(1 − cosφ)

(β + 2αcosφ)
+

kd∗

2
− 1 

(29) 

Eq. (28) is a quadratic in ξ and hence will have two 

roots, that is 

ξ± = −μ +  μ2 − 1 

For stability, we must have ξ± ≤ 1. Also from Eq.(28) 

we can observe that the product of the two values of ξ 

is clearly unity. So three cases arise. 

Case 1: Both the roots are equal to unity. In that case 

the discriminant of the quadratic Eq.(28) is zero. 

Case 2: One of the roots is greater than unity. In that 

case the discriminant is greater than zero. This means 

that stability condition, that is  ξ± ≤ 1, is not satisfied. 

In other words,ξj  would grow in an unbounded 

manner. 

Case 3: Discriminant is less than zero, that is: 

μ2 − 1 ≤ 0 .Thus, for stability:−1 ≤ μ ≤ 1                  (30)                                                      

Using Eq. (29) , the above inequality becomes: 

−
k2d∗

2
≤

2k2(sin
φ

2  
)2

β+2α−4α (sin
φ

2  
)2
≤ 2 −

k2d∗

2
    (31)                                     

There two cases arises: 

Case 1: for β = −2α  ,inequality (31) becomes 

−
k2d∗

2
≤

k2

−2α 
≤ 2 −

k2d∗

2
                                                      (32)                                                 

The right inequality in (32) which can be written in the 

form: 
k2

−2α 
≤ 2 −

k2d∗

2
                                                                       (33) 
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is satisfied for α < 0; k2 ≪  α  , and k2 small enough to 

make: 

 2 −
k2d∗

2
 → 2 and    0 <

k2

−2α 
 ≪ 1   (34)                                   

but the left inequality, that is  (−d∗/2) ≤ (−1/2α)   is 

valid for  α small enough and α < 0 to make 

 (−1/2α) > 0 . Finally, we can say that our system is 

stable for β = −2α, α < 0 and  k2 ≪  α   ,such that α  

and k2 are small enough.  

Case 2: For β > 2𝛼, 𝛼 > 0  ,the quantity 

 β + 2α − 4α (sin
φ

2  
)2   is positive, so the right 

inequality in (31) which can be written in the form: 

2k2(sin
φ

2  
)2 ≤ (2 −

k2d∗

2
)(β + 2α − 4α (sin

φ

2  
)2)        (35) 

is satisfied for α > 0  ; β > 0  ; β ≫ 2α ; and k2 ≪ β 

small enough to make 2 −
k2d∗

2
→ 2 and 

2k2(sin
φ

2  
)2 → 0 ,but the left inequality in (31) that 

is: −d∗ ≤
4(sin

φ

2  
)2

β+2α−4α (sin
φ

2  
)2

 

is valid for  α > 0  ; β > 0  ; β > 2𝛼  such that α and β 

are small enough and (sin
φ

2  
) ≠ 0 

Finally, we can say that stability in this case requires 
α > 0  ; β > 0  and  β > 2𝛼  
such that α and β and k2 ≪ β   are small enough and 

(sin
φ

2  
) ≠ 0 

2.1. Numerical Example 

We now consider a numerical example to show that the 
numerical results are in good agreement with the 
theoretical analysis. all calculations are implemented 
by MATLAB 7.10.0 .The accuracy of the method is 
measured by the error norm  L∞  defined as 

L∞ =  u(x, t) − S(x, t) ∞ =  maxj uj − Sj    .     

Example  

Consider the dissipative wave equation [4] 
∂2u

∂t2 −
∂2u

∂x2 + 2ut u = 2sin2x sin t cos t                               (36)                                    

subject to the boundary conditions: u 0, t = 0  

and u π, t = 0   ,   And initial conditions: 

u x, 0 = sin x   , ut x, 0 = 0 

The analytical solution is: u x, t = sin x cos t 

from the obtained numerical results in Tables1- 4, we 
can conclude that applying non-polynomial splines in  
the solution of partial differential equations is  

a promising approach. 

Table 1: The exact and numerical solution at 

ℎ =
𝜋

50
  , 𝑘 = 0.001, 𝑡 = 0.25,𝛼 = 10−5  𝑎𝑛𝑑 𝛽 = 0.005 

Numerical solution Exact solution 𝑥 

0.212781989904912 0.211415560113106 0.07𝜋 

0.496403435602516 0.493342243118144 0.17𝜋 

0.731322133816448 0.726977150049252 0.27𝜋 

0.894631106006615 0.889450468385897 0.37𝜋 

0.970411644544139 0.964858177711116 0.47𝜋 

0.951279053551595 0.945818846039751 0.57𝜋 

0.839097661902968 0.834196175810620 0.67𝜋 

0.644800283101537 0.640916571706624 0.77𝜋 

0.387329859409562 0.384899588035650 0.87𝜋 

0.091795241347949 0.091205950934626 0.97𝜋 

Table 2: The maximum absolute errors atℎ =
𝜋

50
 

𝑘 = 0.001 , 𝛼 = 10−5𝑎𝑛𝑑𝛽 = 0.005 

Time 0.10 0.15 0.20 
Error 9.8616*10^-4 2.1532*10^-3 3.7090*10^-3 

Table 3: The maximum absolute errors at ℎ =
𝜋

50
  , 𝑘 = 0.01 , 

𝛼 = −1  𝑎𝑛𝑑 𝛽 = −2𝛼 

Time 1 1.5 2 
Error 2.5274*10^-3 4.4852*10^-3 7.5875*10^-3 

Table 4: The exact and numerical solution at ℎ =
𝜋

50
  , 𝑘 = 0.01 

, 𝑡 = 2.5,𝛼 = −1  𝑎𝑛𝑑 𝛽 = −2𝛼 

Numerical solution Exact solution 𝒙 
-0.173880443622743 -0.173449822213779 𝟎. 𝟎𝟕𝝅 

-0.407480685897835 -0.404748469382337 𝟎. 𝟏𝟕𝝅 

-0.603406828812836 -0.596427516319343 𝟎. 𝟐𝟕𝝅 

-0.741447604522964 -0.729724082404153 𝟎. 𝟑𝟕𝝅 

-0.806147786803187 -0.791590171016600 𝟎. 𝟒𝟕𝝅 

-0.789769859046287 -0.775969898356912 𝟎. 𝟓𝟕𝝅 

-0.694307145831281 -0.684392285545858 𝟎. 𝟔𝟕𝝅 

-0.530927685708137 -0.525821587384132 𝟎. 𝟕𝟕𝝅 
-0.317328698954233 -0.315779808634822 𝟎. 𝟖𝟕𝝅 

-0.074921135704477 -0.074827302049036 𝟎. 𝟗𝟕𝝅 

 

While figures 1 and 2 show the exact and approximate 

solutions which are taking the same shape and 

behavior. 

 
Fig 1: The exact solution (solid black) and numerical 

solution (dot green) at ℎ =
𝜋

50
  , 𝑘 = 0.001, 

𝛼 = 10−5 , 𝛽 = 0.005 𝑎𝑛𝑑 𝑡 = 0.25 
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Fig 2: The exact solution (solid black ) and numerical 

solution (dot red) at  ℎ =
𝜋

50
 , 𝑘 = 0.01, 𝛼 = −1 , 

𝛽 = −2𝛼 𝑎𝑛𝑑 𝑡 = 2.5 

3. CONCLUSIONS 

In this paper, we have developed a new numerical 

method based on quadratic non-polynomial spline 

functions which has three coefficients in each sub 

interval for solving a dissipative wave equation. The 

method is shown to be conditional stable. The obtained 

numerical results showed to maintain good accuracy 

compared with the exact solutions. The results 

obtained by the proposed technique show that  the 

approach is easy to implement and computationally 

very attractive .It is shown that the proposed method 

robust, efficient, and easy to implement for linear and 

nonlinear problems arising in science and engineering. 
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